Data-driven Insights for Informed Decision-Making: Applying LSTM Networks for Robust Electricity Forecasting in Libya
- URL: http://arxiv.org/abs/2507.01034v1
- Date: Fri, 20 Jun 2025 23:41:41 GMT
- Title: Data-driven Insights for Informed Decision-Making: Applying LSTM Networks for Robust Electricity Forecasting in Libya
- Authors: Asma Agaal, Mansour Essgaer, Hend M. Farkash, Zulaiha Ali Othman,
- Abstract summary: This study proposes a data-driven approach to forecast electricity load, generation, and deficits for 2025 in Benghazi, Libya.<n>Multiple time series models were applied, including ARIMA, seasonal ARIMA, dynamic regression ARIMA, exponential smoothing, extreme gradient boosting, and Long Short-Term Memory (LSTM) neural networks.<n>LSTM outperformed all other models, showing strong capabilities in modeling non-stationary and seasonal patterns.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate electricity forecasting is crucial for grid stability and energy planning, especially in Benghazi, Libya, where frequent load shedding, generation deficits, and infrastructure limitations persist. This study proposes a data-driven approach to forecast electricity load, generation, and deficits for 2025 using historical data from 2019 (a year marked by instability) and 2023 (a more stable year). Multiple time series models were applied, including ARIMA, seasonal ARIMA, dynamic regression ARIMA, exponential smoothing, extreme gradient boosting, and Long Short-Term Memory (LSTM) neural networks. The dataset was enhanced through missing value imputation, outlier smoothing, and log transformation. Performance was assessed using mean squared error, root mean squared error, mean absolute error, and mean absolute percentage error. LSTM outperformed all other models, showing strong capabilities in modeling non-stationary and seasonal patterns. A key contribution of this work is an optimized LSTM framework that integrates exogenous factors such as temperature and humidity, offering robust performance in forecasting multiple electricity indicators. These results provide practical insights for policymakers and grid operators to enable proactive load management and resource planning in data-scarce, volatile regions.
Related papers
- End-to-End Framework for Predicting the Remaining Useful Life of Lithium-Ion Batteries [0.04660328753262073]
This paper proposes a RUL prediction approach that leverages data from recent charge-discharge cycles to estimate the number of remaining usable cycles.<n>The approach introduces both a novel signal processing pipeline and a deep learning prediction model.<n> Experimental results on two publicly available large-scale datasets demonstrate that the proposed method outperforms a baseline deep learning approach and machine learning techniques.
arXiv Detail & Related papers (2025-05-22T13:28:18Z) - IISE PG&E Energy Analytics Challenge 2025: Hourly-Binned Regression Models Beat Transformers in Load Forecasting [0.0]
This study evaluates forecasting models ranging from classical regression techniques to advanced deep learning architectures.<n>The dataset includes two years of historical electricity load data, alongside temperature and global horizontal irradiance (GHI) across five sites.<n>Our results reveal that deep learning models, including TimeGPT, fail to consistently outperform simpler statistical and machine learning approaches.
arXiv Detail & Related papers (2025-05-16T15:55:34Z) - Load Forecasting in the Era of Smart Grids: Opportunities and Advanced Machine Learning Models [0.0]
Electric energy is difficult to store, requiring stricter control over its generation, transmission, and distribution.<n>This thesis examines and evaluates four machine learning frameworks for short term load forecasting.<n>In addition, two recurrent neural network architectures, Long Short Term Memory (LSTM) networks and Gated Recurrent Units (GRU) are designed and implemented.
arXiv Detail & Related papers (2025-05-14T09:19:47Z) - Enhanced Load Forecasting with GAT-LSTM: Leveraging Grid and Temporal Features [3.320858630462999]
This paper introduces GAT-LSTM, a hybrid model that combines Graph Attention Networks (GAT) and Long Short-Term Memory (LSTM) networks.<n>A key innovation of the model is the incorporation of edge attributes, such as line capacities and efficiencies, into the attention mechanism.<n> Experimental evaluations on the Brazilian Electricity System dataset demonstrate that the GAT-LSTM model significantly outperforms state-of-the-art models.
arXiv Detail & Related papers (2025-02-12T13:07:18Z) - Optimizing Sequential Recommendation Models with Scaling Laws and Approximate Entropy [104.48511402784763]
Performance Law for SR models aims to theoretically investigate and model the relationship between model performance and data quality.<n>We propose Approximate Entropy (ApEn) to assess data quality, presenting a more nuanced approach compared to traditional data quantity metrics.
arXiv Detail & Related papers (2024-11-30T10:56:30Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - Scaling Relationship on Learning Mathematical Reasoning with Large
Language Models [75.29595679428105]
We investigate how the pre-training loss, supervised data amount, and augmented data amount influence the reasoning performances of a supervised LLM.
We find that rejection samples from multiple models push LLaMA-7B to an accuracy of 49.3% on GSM8K which outperforms the supervised fine-tuning (SFT) accuracy of 35.9% significantly.
arXiv Detail & Related papers (2023-08-03T15:34:01Z) - Mitigating Data Redundancy to Revitalize Transformer-based Long-Term Time Series Forecasting System [46.39662315849883]
We introduce CLMFormer, a novel framework that mitigates redundancy through curriculum learning and a memory-driven decoder.<n>CLMFormer consistently improves Transformer-based models by up to 30%, demonstrating its effectiveness in long-horizon forecasting.
arXiv Detail & Related papers (2022-07-16T04:05:15Z) - Random vector functional link neural network based ensemble deep
learning for short-term load forecasting [14.184042046855884]
This paper proposes a novel ensemble deep Random Functional Link (edRVFL) network for electricity load forecasting.
The hidden layers are stacked to enforce deep representation learning.
The model generates the forecasts by ensembling the outputs of each layer.
arXiv Detail & Related papers (2021-07-30T01:20:48Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
Deep learning models have led to significant performance improvements in many problems coming from different domains, including prediction problems of financial time-series data.
The Temporal Attention-Augmented Bilinear network was recently proposed as an efficient and high-performing model for Limit Order Book time-series forecasting.
In this paper, we propose a low-rank tensor approximation of the model to further reduce the number of trainable parameters and increase its speed.
arXiv Detail & Related papers (2021-07-05T10:15:23Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.