論文の概要: Potential failures of physics-informed machine learning in traffic flow modeling: theoretical and experimental analysis
- arxiv url: http://arxiv.org/abs/2505.11491v2
- Date: Sat, 13 Sep 2025 19:25:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-16 15:23:16.13549
- Title: Potential failures of physics-informed machine learning in traffic flow modeling: theoretical and experimental analysis
- Title(参考訳): 交通流モデリングにおける物理インフォームド機械学習の可能性:理論的および実験的解析
- Authors: Yuan-Zheng Lei, Yaobang Gong, Dianwei Chen, Yao Cheng, Xianfeng Terry Yang,
- Abstract要約: 本研究では,物理インフォームド・機械学習 (PIML) がマクロな交通流モデリングに失敗する原因について検討する。
障害を、PIMLモデルが純粋にデータ駆動と純粋に物理ベースラインの両方を所定の閾値で下回る場合として定義する。
LWRベースのPIMLが高解像度のデータでもARZベースのPIMLより優れている理由を説明する。
- 参考スコア(独自算出の注目度): 5.055539099879598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study investigates why physics-informed machine learning (PIML) can fail in macroscopic traffic flow modeling. We define failure as cases where a PIML model underperforms both purely data-driven and purely physics-based baselines by a given threshold. Unlike in other fields, physics residuals themselves do not hinder optimization in this setting. Instead, effective updates require both data and physics gradients to form acute angles with the true gradient, a condition difficult to satisfy with low-resolution loop data. In such cases, neural networks cannot accurately approximate density and speed, and the constructed physics residuals, already degraded by discrete sampling and temporal averaging, lose their ability to capture PDE dynamics, which directly leads to PIML failure. Theoretically, although LWR and ARZ solutions are weak solutions, for piecewise $C^k$ initial data they remain $C^k$ off the shock set under mild conditions, which has Lebesgue measure zero. Thus, almost all detector or collocation points lie in smooth regions where residuals are valid, and the MLP's inability to exactly represent discontinuities is immaterial. Finally, we establish MSE lower bounds of physics residuals: higher-order models such as ARZ have strictly larger consistency error bounds than LWR under mild conditions. This explains why LWR-based PIML can outperform ARZ-based PIML even with high-resolution data, with the gap shrinking as resolution increases, consistent with prior empirical findings.
- Abstract(参考訳): 本研究では,物理インフォームド・機械学習 (PIML) がマクロな交通流モデリングに失敗する原因について検討する。
障害を、PIMLモデルが純粋にデータ駆動と純粋に物理ベースラインの両方を所定の閾値で下回る場合として定義する。
他の分野とは異なり、物理学の残差は、この設定における最適化を妨げない。
代わりに、効果的な更新は、真の勾配で急性の角度を形成するためにデータと物理の勾配の両方を必要とし、これは低解像度のループデータで満たすのが難しい条件である。
このような場合、ニューラルネットワークは密度と速度を正確に近似することはできず、構築された物理残差は離散サンプリングと時間平均化によって既に劣化しており、PDEダイナミクスを捕捉する能力を失い、PIMLの故障に直接繋がる。
理論的には、LWR と ARZ の解は弱解であるが、素数$C^k$ の初期データについては、ルベーグ測度 0 の穏やかな条件下でのショックセットから$C^k$ を外す。
したがって、ほとんど全ての検出器またはコロケーションポイントは、残留物が有効である滑らかな領域にあり、MLPが不連続性を正確に表現できないことは非物質的である。
最後に、MSEの物理残差を低く設定する:ARZのような高次モデルは、穏やかな条件下ではLWRよりも厳密な整合誤差境界を持つ。
このことは、LWRベースのPIMLが高解像度のデータでもARZベースのPIMLより優れている理由を説明する。
関連論文リスト
- Reconstructing Physics-Informed Machine Learning for Traffic Flow Modeling: a Multi-Gradient Descent and Pareto Learning Approach [5.937203351551678]
物理インフォームド・機械学習(PIML)は現代の流れモデリングにおいて重要である。
本稿では,多目的最適化問題として,トレーニングプロセスの修正によるPIMLのパラダイムシフトを提案する。
論文 参考訳(メタデータ) (2025-05-19T15:23:24Z) - A Theoretical Perspective: How to Prevent Model Collapse in Self-consuming Training Loops [55.07063067759609]
高品質なデータは大規模な生成モデルのトレーニングには不可欠だが、オンラインで利用可能な実際のデータの膨大な蓄積はほとんど枯渇している。
モデルは、さらなるトレーニングのために独自のデータを生成し、自己消費訓練ループ(STL)を形成する。
一部のモデルは劣化または崩壊するが、他のモデルはこれらの失敗をうまく回避し、理論的な理解にかなりのギャップを残している。
論文 参考訳(メタデータ) (2025-02-26T06:18:13Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
低ランク近似技術は、微調整された大規模言語モデルのデファクトスタンダードとなっている。
本稿では,これらの手法が初期訓練済みデータ分布から微調整データセットのシフトを捉える上での有効性について検討する。
低ランク微調整は好ましくない偏見や有害な振る舞いを必然的に保存することを示す。
論文 参考訳(メタデータ) (2024-05-28T20:43:53Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML法は、非線形構造の地震応答をモデル化するために、科学的原理と物理法則をディープニューラルネットワークに統合する。
運動方程式を操作することは、システムの非線形性を学習し、物理的に解釈可能な結果の中で解を閉じ込めるのに役立つ。
結果、既存の物理誘導LSTMモデルよりも複雑なデータを処理し、他の非物理データ駆動ネットワークより優れている。
論文 参考訳(メタデータ) (2024-02-28T02:16:03Z) - Physics-Informed Deep Learning of Rate-and-State Fault Friction [0.0]
我々は, 前方問題と非線形欠陥摩擦パラメータの直接逆変換のためのマルチネットワークPINNを開発した。
本稿では1次元および2次元のストライク・スリップ断層に対する速度・状態摩擦を考慮した計算PINNフレームワークを提案する。
その結果, 断層におけるパラメータ逆転のネットワークは, 結合した物質変位のネットワークよりもはるかに優れていることがわかった。
論文 参考訳(メタデータ) (2023-12-14T23:53:25Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGM) は、ロボット工学やコンピュータグラフィックスにおける連続的な制御タスクに広く採用されている。
近年の研究では、長期強化学習問題に適用した場合、モデルベースRP PGMはカオス的かつ非滑らかな最適化環境を経験する可能性があることが示されている。
本稿では,長期モデルアンロールによる爆発的分散問題を緩和するスペクトル正規化法を提案する。
論文 参考訳(メタデータ) (2023-10-30T18:43:21Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - A Physics Enhanced Residual Learning (PERL) Framework for Vehicle Trajectory Prediction [5.7215490229343535]
PERLは、トラフィック状態予測のための物理とデータ駆動方式の長所を統合する。
物理モデルに固有の解釈可能性を保持し、データ要求を減らした。
PERLは、物理モデル、データ駆動モデル、PINNモデルと比較して、小さなデータセットでより良い予測を実現する。
論文 参考訳(メタデータ) (2023-09-26T21:41:45Z) - A physics-constrained machine learning method for mapping gapless land
surface temperature [6.735896406986559]
本稿では,物理的意味と高精度なLSTを生成する物理MLモデルを提案する。
勾配入力としてリモートセンシングデータのみを使用する光発振機(LGBM)モデルは、純粋なMLモデルとして機能する。
純粋な物理法や純粋なML法と比較して、PC-LGBMモデルはLSTの予測精度と物理的解釈性を改善する。
論文 参考訳(メタデータ) (2023-07-03T01:44:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。