Assessing Collective Reasoning in Multi-Agent LLMs via Hidden Profile Tasks
- URL: http://arxiv.org/abs/2505.11556v1
- Date: Thu, 15 May 2025 19:22:54 GMT
- Title: Assessing Collective Reasoning in Multi-Agent LLMs via Hidden Profile Tasks
- Authors: Yuxuan Li, Aoi Naito, Hirokazu Shirado,
- Abstract summary: We introduce the Hidden Profile paradigm from social psychology as a diagnostic testbed for multi-agent LLM systems.<n>By distributing critical information asymmetrically across agents, the paradigm reveals how inter-agent dynamics support or hinder collective reasoning.<n>We find that while cooperative agents are prone to over-coordination in collective settings, increased contradiction impairs group convergence.
- Score: 5.120446836495469
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-agent systems built on large language models (LLMs) promise enhanced problem-solving through distributed information integration, but also risk replicating collective reasoning failures observed in human groups. Yet, no theory-grounded benchmark exists to systematically evaluate such failures. In this paper, we introduce the Hidden Profile paradigm from social psychology as a diagnostic testbed for multi-agent LLM systems. By distributing critical information asymmetrically across agents, the paradigm reveals how inter-agent dynamics support or hinder collective reasoning. We first formalize the paradigm for multi-agent decision-making under distributed knowledge and instantiate it as a benchmark with nine tasks spanning diverse scenarios, including adaptations from prior human studies. We then conduct experiments with GPT-4.1 and five other leading LLMs, including reasoning-enhanced variants, showing that multi-agent systems across all models fail to match the accuracy of single agents given complete information. While agents' collective performance is broadly comparable to that of human groups, nuanced behavioral differences emerge, such as increased sensitivity to social desirability. Finally, we demonstrate the paradigm's diagnostic utility by exploring a cooperation-contradiction trade-off in multi-agent LLM systems. We find that while cooperative agents are prone to over-coordination in collective settings, increased contradiction impairs group convergence. This work contributes a reproducible framework for evaluating multi-agent LLM systems and motivates future research on artificial collective intelligence and human-AI interaction.
Related papers
- An Adversary-Resistant Multi-Agent LLM System via Credibility Scoring [8.779871128906787]
We introduce a general and adversary-resistant multi-agent LLM framework based on credibility scoring.<n>Our system associates a credibility score that is used when aggregating the team outputs.
arXiv Detail & Related papers (2025-05-30T05:57:37Z) - PeerGuard: Defending Multi-Agent Systems Against Backdoor Attacks Through Mutual Reasoning [8.191214701984162]
Multi-agent systems leverage advanced AI models as autonomous agents that interact, cooperate, or compete to complete complex tasks.<n>Despite their growing importance, safety in multi-agent systems remains largely underexplored.<n>This work investigates backdoor vulnerabilities in multi-agent systems and proposes a defense mechanism based on agent interactions.
arXiv Detail & Related papers (2025-05-16T19:08:29Z) - MAMM-Refine: A Recipe for Improving Faithfulness in Generation with Multi-Agent Collaboration [63.31211701741323]
We extend multi-agent multi-model reasoning to generation, specifically to improving faithfulness through refinement.<n>We design intrinsic evaluations for each subtask, with our findings indicating that both multi-agent (multiple instances) and multi-model (diverse LLM types) approaches benefit error detection and critiquing.<n>We consolidate these insights into a final "recipe" called Multi-Agent Multi-Model Refinement (MAMM-Refine), where multi-agent and multi-model collaboration significantly boosts performance.
arXiv Detail & Related papers (2025-03-19T14:46:53Z) - MALT: Improving Reasoning with Multi-Agent LLM Training [66.9481561915524]
MALT (Multi-Agent LLM Training) is a novel post-training strategy that divides the reasoning process into generation, verification, and refinement steps.<n>On MATH, GSM8K, and CSQA, MALT surpasses the same baseline LLM with a relative improvement of 15.66%, 7.42%, and 9.40% respectively.
arXiv Detail & Related papers (2024-12-02T19:30:36Z) - DrugAgent: Multi-Agent Large Language Model-Based Reasoning for Drug-Target Interaction Prediction [8.98329812378801]
DrugAgent is a multi-agent system for drug-target interaction prediction.<n>It combines multiple specialized perspectives with transparent reasoning.<n>Our approach provides detailed, human-interpretable reasoning for each prediction.
arXiv Detail & Related papers (2024-08-23T21:24:59Z) - Enhancing Heterogeneous Multi-Agent Cooperation in Decentralized MARL via GNN-driven Intrinsic Rewards [1.179778723980276]
Multi-agent Reinforcement Learning (MARL) is emerging as a key framework for sequential decision-making and control tasks.
The deployment of these systems in real-world scenarios often requires decentralized training, a diverse set of agents, and learning from infrequent environmental reward signals.
We propose the CoHet algorithm, which utilizes a novel Graph Neural Network (GNN) based intrinsic motivation to facilitate the learning of heterogeneous agent policies.
arXiv Detail & Related papers (2024-08-12T21:38:40Z) - EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms [55.77492625524141]
EvoAgent is a generic method to automatically extend specialized agents to multi-agent systems.<n>We show that EvoAgent can significantly enhance the task-solving capability of LLM-based agents.
arXiv Detail & Related papers (2024-06-20T11:49:23Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
We introduce the problem of Large Language Models (LLMs)-based human-agent collaboration for complex task-solving.
We propose a Reinforcement Learning-based Human-Agent Collaboration method, ReHAC.
This approach includes a policy model designed to determine the most opportune stages for human intervention within the task-solving process.
arXiv Detail & Related papers (2024-02-20T11:03:36Z) - Deep Multi-Agent Reinforcement Learning for Decentralized Active
Hypothesis Testing [11.639503711252663]
We tackle the multi-agent active hypothesis testing (AHT) problem by introducing a novel algorithm rooted in the framework of deep multi-agent reinforcement learning.
We present a comprehensive set of experimental results that effectively showcase the agents' ability to learn collaborative strategies and enhance performance.
arXiv Detail & Related papers (2023-09-14T01:18:04Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
A central problem in the theory of multi-agent reinforcement learning (MARL) is to understand what structural conditions and algorithmic principles lead to sample-efficient learning guarantees.
We study this question in a general framework for interactive decision making with multiple agents.
We show that characterizing the statistical complexity for multi-agent decision making is equivalent to characterizing the statistical complexity of single-agent decision making.
arXiv Detail & Related papers (2023-05-01T06:46:22Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.