Using Reinforcement Learning to Train Large Language Models to Explain Human Decisions
- URL: http://arxiv.org/abs/2505.11614v1
- Date: Fri, 16 May 2025 18:22:05 GMT
- Title: Using Reinforcement Learning to Train Large Language Models to Explain Human Decisions
- Authors: Jian-Qiao Zhu, Hanbo Xie, Dilip Arumugam, Robert C. Wilson, Thomas L. Griffiths,
- Abstract summary: In this work, we explore the potential of pretrained large language models to serve as dual-purpose cognitive models.<n>We employ reinforcement learning with outcome-based rewards to guide LLMs toward generating explicit reasoning traces for explaining human risky choices.
- Score: 11.40240971657506
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A central goal of cognitive modeling is to develop models that not only predict human behavior but also provide insight into the underlying cognitive mechanisms. While neural network models trained on large-scale behavioral data often achieve strong predictive performance, they typically fall short in offering interpretable explanations of the cognitive processes they capture. In this work, we explore the potential of pretrained large language models (LLMs) to serve as dual-purpose cognitive models--capable of both accurate prediction and interpretable explanation in natural language. Specifically, we employ reinforcement learning with outcome-based rewards to guide LLMs toward generating explicit reasoning traces for explaining human risky choices. Our findings demonstrate that this approach produces high-quality explanations alongside strong quantitative predictions of human decisions.
Related papers
- Can Language Models Learn to Skip Steps? [59.84848399905409]
We study the ability to skip steps in reasoning.
Unlike humans, who may skip steps to enhance efficiency or to reduce cognitive load, models do not possess such motivations.
Our work presents the first exploration into human-like step-skipping ability.
arXiv Detail & Related papers (2024-11-04T07:10:24Z) - XForecast: Evaluating Natural Language Explanations for Time Series Forecasting [72.57427992446698]
Time series forecasting aids decision-making, especially for stakeholders who rely on accurate predictions.
Traditional explainable AI (XAI) methods, which underline feature or temporal importance, often require expert knowledge.
evaluating forecast NLEs is difficult due to the complex causal relationships in time series data.
arXiv Detail & Related papers (2024-10-18T05:16:39Z) - Predicting and Understanding Human Action Decisions: Insights from Large Language Models and Cognitive Instance-Based Learning [0.0]
Large Language Models (LLMs) have demonstrated their capabilities across various tasks.
This paper exploits the reasoning and generative capabilities of the LLMs to predict human behavior in two sequential decision-making tasks.
We compare the performance of LLMs with a cognitive instance-based learning model, which imitates human experiential decision-making.
arXiv Detail & Related papers (2024-07-12T14:13:06Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - A Novel Neural-symbolic System under Statistical Relational Learning [47.30190559449236]
We propose a neural-symbolic framework based on statistical relational learning, referred to as NSF-SRL.<n>Results of symbolic reasoning are utilized to refine and correct the predictions made by deep learning models, while deep learning models enhance the efficiency of the symbolic reasoning process.<n>We believe that this approach sets a new standard for neural-symbolic systems and will drive future research in the field of general artificial intelligence.
arXiv Detail & Related papers (2023-09-16T09:15:37Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Turning large language models into cognitive models [0.0]
We show that large language models can be turned into cognitive models.
These models offer accurate representations of human behavior, even outperforming traditional cognitive models in two decision-making domains.
Taken together, these results suggest that large, pre-trained models can be adapted to become generalist cognitive models.
arXiv Detail & Related papers (2023-06-06T18:00:01Z) - Learning Theory of Mind via Dynamic Traits Attribution [59.9781556714202]
We propose a new neural ToM architecture that learns to generate a latent trait vector of an actor from the past trajectories.
This trait vector then multiplicatively modulates the prediction mechanism via a fast weights' scheme in the prediction neural network.
We empirically show that the fast weights provide a good inductive bias to model the character traits of agents and hence improves mindreading ability.
arXiv Detail & Related papers (2022-04-17T11:21:18Z) - Towards Interpretable Deep Reinforcement Learning Models via Inverse
Reinforcement Learning [27.841725567976315]
We propose a novel framework utilizing Adversarial Inverse Reinforcement Learning.
This framework provides global explanations for decisions made by a Reinforcement Learning model.
We capture intuitive tendencies that the model follows by summarizing the model's decision-making process.
arXiv Detail & Related papers (2022-03-30T17:01:59Z) - Human-Understandable Decision Making for Visual Recognition [30.30163407674527]
We propose a new framework to train a deep neural network by incorporating the prior of human perception into the model learning process.
The effectiveness of our proposed model is evaluated on two classical visual recognition tasks.
arXiv Detail & Related papers (2021-03-05T02:07:33Z) - Learning to Rationalize for Nonmonotonic Reasoning with Distant
Supervision [44.32874972577682]
We investigate the extent to which neural models can reason about natural language rationales that explain model predictions.
We use pre-trained language models, neural knowledge models, and distant supervision from related tasks.
Our model shows promises at generating post-hoc rationales explaining why an inference is more or less likely given the additional information.
arXiv Detail & Related papers (2020-12-14T23:50:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.