AdaptMol: Adaptive Fusion from Sequence String to Topological Structure for Few-shot Drug Discovery
- URL: http://arxiv.org/abs/2505.11878v1
- Date: Sat, 17 May 2025 07:12:12 GMT
- Title: AdaptMol: Adaptive Fusion from Sequence String to Topological Structure for Few-shot Drug Discovery
- Authors: Yifan Dai, Xuanbai Ren, Tengfei Ma, Qipeng Yan, Yiping Liu, Yuansheng Liu, Xiangxiang Zeng,
- Abstract summary: We present AdaptMol, a prototypical network integrating Adaptive multimodal fusion for representation.<n>This framework employs a dual-level attention mechanism to dynamically integrate global and local molecular features.<n>Experiments on three commonly used benchmarks under 5-shot and 10-shot settings demonstrate that AdaptMol achieves state-of-the-art performance.
- Score: 7.338199946027998
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate molecular property prediction (MPP) is a critical step in modern drug development. However, the scarcity of experimental validation data poses a significant challenge to AI-driven research paradigms. Under few-shot learning scenarios, the quality of molecular representations directly dictates the theoretical upper limit of model performance. We present AdaptMol, a prototypical network integrating Adaptive multimodal fusion for Molecular representation. This framework employs a dual-level attention mechanism to dynamically integrate global and local molecular features derived from two modalities: SMILES sequences and molecular graphs. (1) At the local level, structural features such as atomic interactions and substructures are extracted from molecular graphs, emphasizing fine-grained topological information; (2) At the global level, the SMILES sequence provides a holistic representation of the molecule. To validate the necessity of multimodal adaptive fusion, we propose an interpretable approach based on identifying molecular active substructures to demonstrate that multimodal adaptive fusion can efficiently represent molecules. Extensive experiments on three commonly used benchmarks under 5-shot and 10-shot settings demonstrate that AdaptMol achieves state-of-the-art performance in most cases. The rationale-extracted method guides the fusion of two modalities and highlights the importance of both modalities.
Related papers
- Aligned Manifold Property and Topology Point Clouds for Learning Molecular Properties [55.2480439325792]
This work introduces AMPTCR, a molecular surface representation that combines local quantum-derived scalar fields and custom topological descriptors within an aligned point cloud format.<n>For molecular weight, results confirm that AMPTCR encodes physically meaningful data, with a validation R2 of 0.87.<n>In the bacterial inhibition task, AMPTCR enables both classification and direct regression of E. coli inhibition values.
arXiv Detail & Related papers (2025-07-22T04:35:50Z) - Multi-Level Fusion Graph Neural Network for Molecule Property Prediction [7.496721948662087]
We propose a Multi-Level Fusion Graph Neural Network (MLFGNN) that integrates Graph Attention Networks and a novel Graph Transformer.<n>Experiments on multiple benchmark datasets demonstrate that MLFGNN consistently outperforms state-of-the-art methods in both classification and regression tasks.
arXiv Detail & Related papers (2025-07-04T09:38:19Z) - Multi-Modal Molecular Representation Learning via Structure Awareness [19.813872931221546]
We propose a structure-awareness-based multi-modal self-supervised molecular representation pre-training framework (MMSA)<n>MMSA enhances molecular graph representations by leveraging invariant knowledge between molecules.<n>It achieves state-of-the-art performance on the MoleculeNet benchmark, with average ROC-AUC improvements ranging from 1.8% to 9.6% over baseline methods.
arXiv Detail & Related papers (2025-05-09T08:37:29Z) - Data-Efficient Molecular Generation with Hierarchical Textual Inversion [48.816943690420224]
We introduce Hierarchical textual Inversion for Molecular generation (HI-Mol), a novel data-efficient molecular generation method.
HI-Mol is inspired by the importance of hierarchical information, e.g., both coarse- and fine-grained features, in understanding the molecule distribution.
Compared to the conventional textual inversion method in the image domain using a single-level token embedding, our multi-level token embeddings allow the model to effectively learn the underlying low-shot molecule distribution.
arXiv Detail & Related papers (2024-05-05T08:35:23Z) - MolTC: Towards Molecular Relational Modeling In Language Models [28.960416816491392]
We propose a novel framework for Molecular inTeraction prediction following Chain-of-Thought (CoT) theory termed MolTC.
Our experiments, conducted across various datasets involving over 4,000,000 molecular pairs, exhibit the superiority of our method over current GNN and LLM-based baselines.
arXiv Detail & Related papers (2024-02-06T07:51:56Z) - Integrating Chemical Language and Molecular Graph in Multimodal Fused Deep Learning for Drug Property Prediction [9.388979080270103]
We construct multimodal deep learning models to cover different molecular representations.
Compared with mono-modal models, our multimodal fused deep learning (MMFDL) models outperform single models in accuracy, reliability, and resistance capability against noise.
arXiv Detail & Related papers (2023-12-29T07:19:42Z) - Learning Over Molecular Conformer Ensembles: Datasets and Benchmarks [44.934084652800976]
We introduce the first MoleculAR Conformer Ensemble Learning benchmark to thoroughly evaluate the potential of learning on conformer ensembles.
Our findings reveal that direct learning from an conformer space can improve performance on a variety of tasks and models.
arXiv Detail & Related papers (2023-09-29T20:06:46Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule Representations [68.32093648671496]
We introduce GODE, which accounts for the dual-level structure inherent in molecules.<n> Molecules possess an intrinsic graph structure and simultaneously function as nodes within a broader molecular knowledge graph.<n>By pre-training two GNNs on different graph structures, GODE effectively fuses molecular structures with their corresponding knowledge graph substructures.
arXiv Detail & Related papers (2023-06-02T15:49:45Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
We introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA)
ASBA addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information.
Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications.
arXiv Detail & Related papers (2023-05-22T00:56:00Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
We formulate molecular optimization as a style transfer problem and present a novel generative model that could automatically learn internal differences between two groups of non-parallel data.
Experiments on two molecular optimization tasks, toxicity modification and synthesizability improvement, demonstrate that our model significantly outperforms several state-of-the-art methods.
arXiv Detail & Related papers (2021-11-30T06:10:22Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.