iSegMan: Interactive Segment-and-Manipulate 3D Gaussians
- URL: http://arxiv.org/abs/2505.11934v1
- Date: Sat, 17 May 2025 09:41:10 GMT
- Title: iSegMan: Interactive Segment-and-Manipulate 3D Gaussians
- Authors: Yian Zhao, Wanshi Xu, Ruochong Zheng, Pengchong Qiao, Chang Liu, Jie Chen,
- Abstract summary: iSegMan is an interactive segmentation and manipulation framework that only requires simple 2D user interactions in any view.<n>Epipolar-guided Interaction propagation (EIP) exploits epipolar constraint for efficient and robust interaction matching.<n> Visibility-based Gaussian Voting (VGV) obtains 2D segmentations from SAM and models the region extraction as a voting game.
- Score: 5.746109453405226
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The efficient rendering and explicit nature of 3DGS promote the advancement of 3D scene manipulation. However, existing methods typically encounter challenges in controlling the manipulation region and are unable to furnish the user with interactive feedback, which inevitably leads to unexpected results. Intuitively, incorporating interactive 3D segmentation tools can compensate for this deficiency. Nevertheless, existing segmentation frameworks impose a pre-processing step of scene-specific parameter training, which limits the efficiency and flexibility of scene manipulation. To deliver a 3D region control module that is well-suited for scene manipulation with reliable efficiency, we propose interactive Segment-and-Manipulate 3D Gaussians (iSegMan), an interactive segmentation and manipulation framework that only requires simple 2D user interactions in any view. To propagate user interactions to other views, we propose Epipolar-guided Interaction Propagation (EIP), which innovatively exploits epipolar constraint for efficient and robust interaction matching. To avoid scene-specific training to maintain efficiency, we further propose the novel Visibility-based Gaussian Voting (VGV), which obtains 2D segmentations from SAM and models the region extraction as a voting game between 2D Pixels and 3D Gaussians based on Gaussian visibility. Taking advantage of the efficient and precise region control of EIP and VGV, we put forth a Manipulation Toolbox to implement various functions on selected regions, enhancing the controllability, flexibility and practicality of scene manipulation. Extensive results on 3D scene manipulation and segmentation tasks fully demonstrate the significant advantages of iSegMan. Project page is available at https://zhao-yian.github.io/iSegMan.
Related papers
- OV-MAP : Open-Vocabulary Zero-Shot 3D Instance Segmentation Map for Robots [18.200635521222267]
OV-MAP is a novel approach to open-world 3D mapping for mobile robots by integrating open-features into 3D maps to enhance object recognition capabilities.<n>We employ a class-agnostic segmentation model to project 2D masks into 3D space, combined with a supplemented depth image created by merging raw and synthetic depth from point clouds.<n>This approach, along with a 3D mask voting mechanism, enables accurate zero-shot 3D instance segmentation without relying on 3D supervised segmentation models.
arXiv Detail & Related papers (2025-06-13T08:49:23Z) - IAAO: Interactive Affordance Learning for Articulated Objects in 3D Environments [56.85804719947]
We present IAAO, a framework that builds an explicit 3D model for intelligent agents to gain understanding of articulated objects in their environment through interaction.<n>We first build hierarchical features and label fields for each object state using 3D Gaussian Splatting (3DGS) by distilling mask features and view-consistent labels from multi-view images.<n>We then perform object- and part-level queries on the 3D Gaussian primitives to identify static and articulated elements, estimating global transformations and local articulation parameters along with affordances.
arXiv Detail & Related papers (2025-04-09T12:36:48Z) - econSG: Efficient and Multi-view Consistent Open-Vocabulary 3D Semantic Gaussians [56.85804719947]
We propose econSG for open-vocabulary semantic segmentation with 3DGS.<n>Our econSG shows state-of-the-art performance on four benchmark datasets compared to the existing methods.
arXiv Detail & Related papers (2025-04-08T13:12:31Z) - GaussianGraph: 3D Gaussian-based Scene Graph Generation for Open-world Scene Understanding [20.578106363482018]
We propose a novel framework that enhances 3DGS-based scene understanding by integrating semantic clustering and scene graph generation.<n>We introduce a "Control-Follow" clustering strategy, which dynamically adapts to scene scale and feature distribution, avoiding feature compression.<n>We enrich scene representation by integrating object attributes and spatial relations extracted from 2D foundation models.
arXiv Detail & Related papers (2025-03-06T02:36:59Z) - SADG: Segment Any Dynamic Gaussian Without Object Trackers [39.77468734311312]
SADG, Segment Any Dynamic Gaussian Without Object Trackers, is a novel approach that combines dynamic Gaussian Splatting representation and semantic information without reliance on object IDs.<n>We learn semantically-aware features by leveraging masks generated from the Segment Anything Model (SAM) and utilizing our novel contrastive learning objective based on hard pixel mining.<n>We evaluate SADG on proposed benchmarks and demonstrate the superior performance of our approach in segmenting objects within dynamic scenes.
arXiv Detail & Related papers (2024-11-28T17:47:48Z) - Articulated Object Manipulation using Online Axis Estimation with SAM2-Based Tracking [57.942404069484134]
Articulated object manipulation requires precise object interaction, where the object's axis must be carefully considered.<n>Previous research employed interactive perception for manipulating articulated objects, but typically, open-loop approaches often suffer from overlooking the interaction dynamics.<n>We present a closed-loop pipeline integrating interactive perception with online axis estimation from segmented 3D point clouds.
arXiv Detail & Related papers (2024-09-24T17:59:56Z) - Coin3D: Controllable and Interactive 3D Assets Generation with Proxy-Guided Conditioning [52.81032340916171]
Coin3D allows users to control the 3D generation using a coarse geometry proxy assembled from basic shapes.
Our method achieves superior controllability and flexibility in the 3D assets generation task.
arXiv Detail & Related papers (2024-05-13T17:56:13Z) - iSeg: Interactive 3D Segmentation via Interactive Attention [14.036050263210182]
We present iSeg, a new interactive technique for segmenting 3D shapes.
We propose a novel interactive attention module capable of processing different numbers and types of clicks.
We apply iSeg to a myriad of shapes from different domains, demonstrating its versatility and faithfulness to the user's specifications.
arXiv Detail & Related papers (2024-04-04T05:54:19Z) - SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition [66.56357905500512]
3D Gaussian Splatting has emerged as an alternative 3D representation for novel view synthesis.<n>We propose SAGD, a conceptually simple yet effective boundary-enhanced segmentation pipeline for 3D-GS.<n>Our approach achieves high-quality 3D segmentation without rough boundary issues, which can be easily applied to other scene editing tasks.
arXiv Detail & Related papers (2024-01-31T14:19:03Z) - SplatMesh: Interactive 3D Segmentation and Editing Using Mesh-Based Gaussian Splatting [86.50200613220674]
A key challenge in 3D-based interactive editing is the absence of an efficient representation that balances diverse modifications with high-quality view synthesis under a given memory constraint.<n>We introduce SplatMesh, a novel fine-grained interactive 3D segmentation and editing algorithm that integrates 3D Gaussian Splatting with a precomputed mesh.<n>By segmenting and editing the simplified mesh, we can effectively edit the Gaussian splats as well, which will lead to extensive experiments on real and synthetic datasets.
arXiv Detail & Related papers (2023-12-26T02:50:42Z) - ALSTER: A Local Spatio-Temporal Expert for Online 3D Semantic
Reconstruction [62.599588577671796]
We propose an online 3D semantic segmentation method that incrementally reconstructs a 3D semantic map from a stream of RGB-D frames.
Unlike offline methods, ours is directly applicable to scenarios with real-time constraints, such as robotics or mixed reality.
arXiv Detail & Related papers (2023-11-29T20:30:18Z) - Scene-Generalizable Interactive Segmentation of Radiance Fields [64.37093918762]
We make the first attempt at Scene-Generalizable Interactive in Radiance Fields (SGISRF)
We propose a novel SGISRF method, which can perform 3D object segmentation for novel (unseen) scenes represented by radiance fields, guided by only a few interactive user clicks in a given set of multi-view 2D images.
Experiments on two real-world challenging benchmarks covering diverse scenes demonstrate 1) effectiveness and scene-generalizability of the proposed method, 2) favorable performance compared to classical method requiring scene-specific optimization.
arXiv Detail & Related papers (2023-08-09T17:55:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.