AFCL: Analytic Federated Continual Learning for Spatio-Temporal Invariance of Non-IID Data
- URL: http://arxiv.org/abs/2505.12245v1
- Date: Sun, 18 May 2025 05:55:09 GMT
- Title: AFCL: Analytic Federated Continual Learning for Spatio-Temporal Invariance of Non-IID Data
- Authors: Jianheng Tang, Huiping Zhuang, Jingyu He, Run He, Jingchao Wang, Kejia Fan, Anfeng Liu, Tian Wang, Leye Wang, Zhanxing Zhu, Shanghang Zhang, Houbing Herbert Song, Yunhuai Liu,
- Abstract summary: Federated Continual Learning (FCL) enables distributed clients to collaboratively train a global model from online task streams.<n>FCL methods face challenges of both spatial data heterogeneity among distributed clients and temporal data heterogeneity across online tasks.<n>We propose a gradient-free method, named Analytic Federated Continual Learning (AFCL), by deriving analytical (i.e., closed-form) solutions from frozen extracted features.
- Score: 45.66391633579935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Continual Learning (FCL) enables distributed clients to collaboratively train a global model from online task streams in dynamic real-world scenarios. However, existing FCL methods face challenges of both spatial data heterogeneity among distributed clients and temporal data heterogeneity across online tasks. Such data heterogeneity significantly degrades the model performance with severe spatial-temporal catastrophic forgetting of local and past knowledge. In this paper, we identify that the root cause of this issue lies in the inherent vulnerability and sensitivity of gradients to non-IID data. To fundamentally address this issue, we propose a gradient-free method, named Analytic Federated Continual Learning (AFCL), by deriving analytical (i.e., closed-form) solutions from frozen extracted features. In local training, our AFCL enables single-epoch learning with only a lightweight forward-propagation process for each client. In global aggregation, the server can recursively and efficiently update the global model with single-round aggregation. Theoretical analyses validate that our AFCL achieves spatio-temporal invariance of non-IID data. This ideal property implies that, regardless of how heterogeneous the data are distributed across local clients and online tasks, the aggregated model of our AFCL remains invariant and identical to that of centralized joint learning. Extensive experiments show the consistent superiority of our AFCL over state-of-the-art baselines across various benchmark datasets and settings.
Related papers
- FedHiP: Heterogeneity-Invariant Personalized Federated Learning Through Closed-Form Solutions [22.424881385529783]
We propose a Heterogeneity-invariant Personalized Federated learning scheme, named FedHiP, through analytical (i.e., closed-form) solutions to avoid gradient-based updates.<n>Our scheme incorporates three phases: analytic local training, analytic global aggregation, and analytic local personalization.<n>Experiments on benchmark datasets validate the superiority of our FedHiP scheme, outperforming the state-of-the-art baselines by at least 5.79%-20.97% in accuracy.
arXiv Detail & Related papers (2025-08-06T14:15:57Z) - Client Selection in Federated Learning with Data Heterogeneity and Network Latencies [19.161254709653914]
Federated learning (FL) is a distributed machine learning paradigm where multiple clients conduct local training based on their private data, then the updated models are sent to a central server for global aggregation.<n>In this paper, we propose two novel theoretically optimal client selection schemes that handle both these heterogeneities.
arXiv Detail & Related papers (2025-04-02T17:31:15Z) - FedDUAL: A Dual-Strategy with Adaptive Loss and Dynamic Aggregation for Mitigating Data Heterogeneity in Federated Learning [12.307490659840845]
Federated Learning (FL) combines locally optimized models from various clients into a unified global model.<n>FL encounters significant challenges such as performance degradation, slower convergence, and reduced robustness of the global model.<n>We introduce an innovative dual-strategy approach designed to effectively resolve these issues.
arXiv Detail & Related papers (2024-12-05T18:42:29Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Mitigating System Bias in Resource Constrained Asynchronous Federated
Learning Systems [2.8790600498444032]
We propose a dynamic global model aggregation method within Asynchronous Federated Learning (AFL) deployments.
Our method scores and adjusts the weighting of client model updates based on their upload frequency to accommodate differences in device capabilities.
arXiv Detail & Related papers (2024-01-24T10:51:15Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Adaptive Self-Distillation for Minimizing Client Drift in Heterogeneous
Federated Learning [9.975023463908496]
Federated Learning (FL) is a machine learning paradigm that enables clients to jointly train a global model by aggregating the locally trained models without sharing any local training data.
We propose a novel regularization technique based on adaptive self-distillation (ASD) for training models on the client side.
Our regularization scheme adaptively adjusts to the client's training data based on the global model entropy and the client's label distribution.
arXiv Detail & Related papers (2023-05-31T07:00:42Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
Federated Learning (FL) has become a popular distributed learning paradigm that involves multiple clients training a global model collaboratively.
The data samples usually follow a long-tailed distribution in the real world, and FL on the decentralized and long-tailed data yields a poorly-behaved global model.
In this work, we integrate the local real data with the global gradient prototypes to form the local balanced datasets.
arXiv Detail & Related papers (2023-01-25T03:18:10Z) - Towards Understanding and Mitigating Dimensional Collapse in Heterogeneous Federated Learning [112.69497636932955]
Federated learning aims to train models across different clients without the sharing of data for privacy considerations.
We study how data heterogeneity affects the representations of the globally aggregated models.
We propose sc FedDecorr, a novel method that can effectively mitigate dimensional collapse in federated learning.
arXiv Detail & Related papers (2022-10-01T09:04:17Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling
and Correction [48.85303253333453]
Federated learning (FL) allows multiple clients to collectively train a high-performance global model without sharing their private data.
We propose a novel federated learning algorithm with local drift decoupling and correction (FedDC)
Our FedDC only introduces lightweight modifications in the local training phase, in which each client utilizes an auxiliary local drift variable to track the gap between the local model parameter and the global model parameters.
Experiment results and analysis demonstrate that FedDC yields expediting convergence and better performance on various image classification tasks.
arXiv Detail & Related papers (2022-03-22T14:06:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.