OSS-Bench: Benchmark Generator for Coding LLMs
- URL: http://arxiv.org/abs/2505.12331v2
- Date: Tue, 20 May 2025 02:24:56 GMT
- Title: OSS-Bench: Benchmark Generator for Coding LLMs
- Authors: Yuancheng Jiang, Roland Yap, Zhenkai Liang,
- Abstract summary: We introduce OSS-Bench, a benchmark generator that constructs large-scale, live evaluation tasks from real-world open-source software.<n> OSS-Bench replaces functions with LLM-generated code and evaluates them using three natural metrics: compilability, functional correctness, and memory safety.<n>Our results demonstrate that OSS-Bench mitigates overfitting by leveraging the evolving complexity of OSS.
- Score: 4.393587297483245
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In light of the rapid adoption of AI coding assistants, LLM-assisted development has become increasingly prevalent, creating an urgent need for robust evaluation of generated code quality. Existing benchmarks often require extensive manual effort to create static datasets, rely on indirect or insufficiently challenging tasks, depend on non-scalable ground truth, or neglect critical low-level security evaluations, particularly memory-safety issues. In this work, we introduce OSS-Bench, a benchmark generator that automatically constructs large-scale, live evaluation tasks from real-world open-source software. OSS-Bench replaces functions with LLM-generated code and evaluates them using three natural metrics: compilability, functional correctness, and memory safety, leveraging robust signals like compilation failures, test-suite violations, and sanitizer alerts as ground truth. In our evaluation, the benchmark, instantiated as OSS-Bench(php) and OSS-Bench(sql), profiles 17 diverse LLMs, revealing insights such as intra-family behavioral patterns and inconsistencies between model size and performance. Our results demonstrate that OSS-Bench mitigates overfitting by leveraging the evolving complexity of OSS and highlights LLMs' limited understanding of low-level code security via extended fuzzing experiments. Overall, OSS-Bench offers a practical and scalable framework for benchmarking the real-world coding capabilities of LLMs.
Related papers
- CodeJudgeBench: Benchmarking LLM-as-a-Judge for Coding Tasks [63.562924932512765]
Large Language Models (LLMs) have advanced the state-of-the-art in various coding tasks.<n>LLMs can also serve as judges, assessing and comparing the quality of responses generated by other models.
arXiv Detail & Related papers (2025-07-14T17:56:29Z) - The SWE-Bench Illusion: When State-of-the-Art LLMs Remember Instead of Reason [1.6249398255272318]
We present empirical evidence that performance gains on SWE-Bench-Verified may be partially driven by memorization rather than genuine problem-solving.<n>We show that state-of-the-art models achieve up to 76% accuracy in identifying buggy file paths using only issue descriptions, without access to repository structure.<n>These findings raise concerns about the validity of existing results and underscore the need for more robust, contamination-resistant benchmarks.
arXiv Detail & Related papers (2025-06-14T00:25:26Z) - SafeGenBench: A Benchmark Framework for Security Vulnerability Detection in LLM-Generated Code [7.209766132478914]
We introduce SafeGenBench, a benchmark specifically designed to assess the security of LLM-generated code.<n>The dataset encompasses a wide range of common software development scenarios and vulnerability types.<n>Through the empirical evaluation of state-of-the-art LLMs on SafeGenBench, we reveal notable deficiencies in their ability to produce vulnerability-free code.
arXiv Detail & Related papers (2025-06-06T02:48:02Z) - Training Language Models to Generate Quality Code with Program Analysis Feedback [66.0854002147103]
Code generation with large language models (LLMs) is increasingly adopted in production but fails to ensure code quality.<n>We propose REAL, a reinforcement learning framework that incentivizes LLMs to generate production-quality code.
arXiv Detail & Related papers (2025-05-28T17:57:47Z) - FEA-Bench: A Benchmark for Evaluating Repository-Level Code Generation for Feature Implementation [26.14778133391999]
FEA-Bench is a benchmark designed to assess the ability of large language models to perform incremental development within code repositories.<n>We collect pull requests from 83 GitHub repositories and use rule-based and intent-based filtering to construct task instances focused on new feature development.
arXiv Detail & Related papers (2025-03-09T16:11:57Z) - CodeIF: Benchmarking the Instruction-Following Capabilities of Large Language Models for Code Generation [24.090719826360342]
We introduce CodeIF, the first benchmark designed to assess the abilities of Large Language Models (LLMs) to adhere to task-oriented instructions within code generation scenarios.<n>We conduct extensive experiments with LLMs, analyzing their strengths and limitations in meeting the demands of these tasks.
arXiv Detail & Related papers (2025-02-26T14:19:49Z) - VulnLLMEval: A Framework for Evaluating Large Language Models in Software Vulnerability Detection and Patching [0.9208007322096533]
Large Language Models (LLMs) have shown promise in tasks like code translation.
This paper introduces VulnLLMEval, a framework designed to assess the performance of LLMs in identifying and patching vulnerabilities in C code.
Our study includes 307 real-world vulnerabilities extracted from the Linux kernel.
arXiv Detail & Related papers (2024-09-16T22:00:20Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
This paper introduces a systematic evaluation framework to assess Large Language Models in detecting cryptographic misuses.
Our in-depth analysis of 11,940 LLM-generated reports highlights that the inherent instabilities in LLMs can lead to over half of the reports being false positives.
The optimized approach achieves a remarkable detection rate of nearly 90%, surpassing traditional methods and uncovering previously unknown misuses in established benchmarks.
arXiv Detail & Related papers (2024-07-23T15:31:26Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - Prompting Large Language Models to Tackle the Full Software Development Lifecycle: A Case Study [72.24266814625685]
We explore the performance of large language models (LLMs) across the entire software development lifecycle with DevEval.<n>DevEval features four programming languages, multiple domains, high-quality data collection, and carefully designed and verified metrics for each task.<n> Empirical studies show that current LLMs, including GPT-4, fail to solve the challenges presented within DevEval.
arXiv Detail & Related papers (2024-03-13T15:13:44Z) - Mercury: A Code Efficiency Benchmark for Code Large Language Models [41.51235610016959]
We present Mercury, the first code efficiency benchmark for Large Language Models for Code (Code LLMs)
It comprises 1,889 Python tasks, each accompanied by adequate solutions that serve as real-world efficiency baselines.
We introduce a new metric Beyond, which computes a runtime-percentile-weighted Pass score to reflect functional correctness and code efficiency simultaneously.
arXiv Detail & Related papers (2024-02-12T17:53:22Z) - SALAD-Bench: A Hierarchical and Comprehensive Safety Benchmark for Large Language Models [107.82336341926134]
SALAD-Bench is a safety benchmark specifically designed for evaluating Large Language Models (LLMs)
It transcends conventional benchmarks through its large scale, rich diversity, intricate taxonomy spanning three levels, and versatile functionalities.
arXiv Detail & Related papers (2024-02-07T17:33:54Z) - Understanding the Effectiveness of Large Language Models in Detecting Security Vulnerabilities [12.82645410161464]
We evaluate the effectiveness of 16 pre-trained Large Language Models on 5,000 code samples from five diverse security datasets.
Overall, LLMs show modest effectiveness in detecting vulnerabilities, obtaining an average accuracy of 62.8% and F1 score of 0.71 across datasets.
We find that advanced prompting strategies that involve step-by-step analysis significantly improve performance of LLMs on real-world datasets in terms of F1 score (by upto 0.18 on average)
arXiv Detail & Related papers (2023-11-16T13:17:20Z) - ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code [76.84199699772903]
ML-Bench is a benchmark rooted in real-world programming applications that leverage existing code repositories to perform tasks.
To evaluate both Large Language Models (LLMs) and AI agents, two setups are employed: ML-LLM-Bench for assessing LLMs' text-to-code conversion within a predefined deployment environment, and ML-Agent-Bench for testing autonomous agents in an end-to-end task execution within a Linux sandbox environment.
arXiv Detail & Related papers (2023-11-16T12:03:21Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
Large Language Models (LLMs) are becoming increasingly smart and autonomous, targeting real-world pragmatic missions beyond traditional NLP tasks.
We present AgentBench, a benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities.
arXiv Detail & Related papers (2023-08-07T16:08:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.