MedAgentBoard: Benchmarking Multi-Agent Collaboration with Conventional Methods for Diverse Medical Tasks
- URL: http://arxiv.org/abs/2505.12371v1
- Date: Sun, 18 May 2025 11:28:17 GMT
- Title: MedAgentBoard: Benchmarking Multi-Agent Collaboration with Conventional Methods for Diverse Medical Tasks
- Authors: Yinghao Zhu, Ziyi He, Haoran Hu, Xiaochen Zheng, Xichen Zhang, Zixiang Wang, Junyi Gao, Liantao Ma, Lequan Yu,
- Abstract summary: We introduce MedAgentBoard, a comprehensive benchmark for the systematic evaluation of multi-agent collaboration, single-LLM, and conventional approaches.<n> MedAgentBoard encompasses four diverse medical task categories: medical (visual) question answering, lay summary generation, structured Electronic Health Record (EHR) predictive modeling, and clinical workflow automation.<n>Our extensive experiments reveal a nuanced landscape: while multi-agent collaboration demonstrates benefits in specific scenarios, it does not consistently outperform advanced single LLMs.
- Score: 17.567786780266353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of Large Language Models (LLMs) has stimulated interest in multi-agent collaboration for addressing complex medical tasks. However, the practical advantages of multi-agent collaboration approaches remain insufficiently understood. Existing evaluations often lack generalizability, failing to cover diverse tasks reflective of real-world clinical practice, and frequently omit rigorous comparisons against both single-LLM-based and established conventional methods. To address this critical gap, we introduce MedAgentBoard, a comprehensive benchmark for the systematic evaluation of multi-agent collaboration, single-LLM, and conventional approaches. MedAgentBoard encompasses four diverse medical task categories: (1) medical (visual) question answering, (2) lay summary generation, (3) structured Electronic Health Record (EHR) predictive modeling, and (4) clinical workflow automation, across text, medical images, and structured EHR data. Our extensive experiments reveal a nuanced landscape: while multi-agent collaboration demonstrates benefits in specific scenarios, such as enhancing task completeness in clinical workflow automation, it does not consistently outperform advanced single LLMs (e.g., in textual medical QA) or, critically, specialized conventional methods that generally maintain better performance in tasks like medical VQA and EHR-based prediction. MedAgentBoard offers a vital resource and actionable insights, emphasizing the necessity of a task-specific, evidence-based approach to selecting and developing AI solutions in medicine. It underscores that the inherent complexity and overhead of multi-agent collaboration must be carefully weighed against tangible performance gains. All code, datasets, detailed prompts, and experimental results are open-sourced at https://medagentboard.netlify.app/.
Related papers
- Lingshu: A Generalist Foundation Model for Unified Multimodal Medical Understanding and Reasoning [57.873833577058]
We build a multimodal dataset enriched with extensive medical knowledge.<n>We then introduce our medical-specialized MLLM: Lingshu.<n>Lingshu undergoes multi-stage training to embed medical expertise and enhance its task-solving capabilities.
arXiv Detail & Related papers (2025-06-08T08:47:30Z) - MMedAgent-RL: Optimizing Multi-Agent Collaboration for Multimodal Medical Reasoning [63.63542462400175]
We propose MMedAgent-RL, a reinforcement learning-based multi-agent framework that enables dynamic, optimized collaboration among medical agents.<n> Specifically, we train two GP agents based on Qwen2.5-VL via RL: the triage doctor learns to assign patients to appropriate specialties, while the attending physician integrates the judgments from multi-specialists.<n>Experiments on five medical VQA benchmarks demonstrate that MMedAgent-RL not only outperforms both open-source and proprietary Med-LVLMs, but also exhibits human-like reasoning patterns.
arXiv Detail & Related papers (2025-05-31T13:22:55Z) - Cross-Task Experiential Learning on LLM-based Multi-Agent Collaboration [63.90193684394165]
We introduce multi-agent cross-task experiential learning (MAEL), a novel framework that endows LLM-driven agents with explicit cross-task learning and experience accumulation.<n>During the experiential learning phase, we quantify the quality for each step in the task-solving workflow and store the resulting rewards.<n>During inference, agents retrieve high-reward, task-relevant experiences as few-shot examples to enhance the effectiveness of each reasoning step.
arXiv Detail & Related papers (2025-05-29T07:24:37Z) - TAMA: A Human-AI Collaborative Thematic Analysis Framework Using Multi-Agent LLMs for Clinical Interviews [54.35097932763878]
Thematic analysis (TA) is a widely used qualitative approach for uncovering latent meanings in unstructured text data.<n>Here, we propose TAMA: A Human-AI Collaborative Thematic Analysis framework using Multi-Agent LLMs for clinical interviews.<n>We demonstrate that TAMA outperforms existing LLM-assisted TA approaches, achieving higher thematic hit rate, coverage, and distinctiveness.
arXiv Detail & Related papers (2025-03-26T15:58:16Z) - MedAgent-Pro: Towards Evidence-based Multi-modal Medical Diagnosis via Reasoning Agentic Workflow [14.478357882578234]
In modern medicine, clinical diagnosis relies on the comprehensive analysis of primarily textual and visual data.<n>Recent advances in large Vision-Language Models (VLMs) and agent-based methods hold great potential for medical diagnosis.<n>We propose MedAgent-Pro, a new agentic reasoning paradigm that follows the diagnosis principle in modern medicine.
arXiv Detail & Related papers (2025-03-21T14:04:18Z) - Medchain: Bridging the Gap Between LLM Agents and Clinical Practice through Interactive Sequential Benchmarking [58.25862290294702]
We present MedChain, a dataset of 12,163 clinical cases that covers five key stages of clinical workflow.<n>We also propose MedChain-Agent, an AI system that integrates a feedback mechanism and a MCase-RAG module to learn from previous cases and adapt its responses.
arXiv Detail & Related papers (2024-12-02T15:25:02Z) - Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
We study the choice of the backbone LLM for medical AI agents, which is the foundation for the agent's overall reasoning and action generation.<n>Our findings demonstrate o1's ability to enhance diagnostic accuracy and consistency, paving the way for smarter, more responsive AI tools.
arXiv Detail & Related papers (2024-11-16T18:19:53Z) - MedAide: Towards an Omni Medical Aide via Specialized LLM-based Multi-Agent Collaboration [16.062646854608094]
Large Language Model (LLM)-driven interactive systems currently show potential promise in healthcare domains.
This paper proposes MedAide, an omni medical multi-agent collaboration framework for specialized healthcare services.
arXiv Detail & Related papers (2024-10-16T13:10:27Z) - MMedAgent: Learning to Use Medical Tools with Multi-modal Agent [27.314055140281432]
This paper introduces the first agent explicitly designed for the medical field, named textbfMulti-modal textbfMedical textbfAgent (MMedAgent)
Comprehensive experiments demonstrate that MMedAgent achieves superior performance across a variety of medical tasks compared to state-of-the-art open-source methods and even the closed-source model, GPT-4o.
arXiv Detail & Related papers (2024-07-02T17:58:23Z) - Capabilities of Gemini Models in Medicine [100.60391771032887]
We introduce Med-Gemini, a family of highly capable multimodal models specialized in medicine.
We evaluate Med-Gemini on 14 medical benchmarks, establishing new state-of-the-art (SoTA) performance on 10 of them.
Our results offer compelling evidence for Med-Gemini's potential, although further rigorous evaluation will be crucial before real-world deployment.
arXiv Detail & Related papers (2024-04-29T04:11:28Z) - MDAgents: An Adaptive Collaboration of LLMs for Medical Decision-Making [45.74980058831342]
We introduce a novel multi-agent framework, named Medical Decision-making Agents (MDAgents)
The assigned solo or group collaboration structure is tailored to the medical task at hand, emulating real-world medical decision-making processes.
MDAgents achieved the best performance in seven out of ten benchmarks on tasks requiring an understanding of medical knowledge.
arXiv Detail & Related papers (2024-04-22T06:30:05Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
Medical artificial general intelligence (MAGI) enables one foundation model to solve different medical tasks.
We propose a new paradigm called Medical-knedge-enhanced mulTimOdal pretRaining (MOTOR)
arXiv Detail & Related papers (2023-04-26T01:26:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.