論文の概要: Addressing the Scarcity of Benchmarks for Graph XAI
- arxiv url: http://arxiv.org/abs/2505.12437v1
- Date: Sun, 18 May 2025 14:19:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:11.235758
- Title: Addressing the Scarcity of Benchmarks for Graph XAI
- Title(参考訳): Graph XAIのベンチマークの空白化への取り組み
- Authors: Michele Fontanesi, Alessio Micheli, Marco Podda, Domenico Tortorella,
- Abstract要約: 実世界のデータセットからグラフ分類を行うためのXAIベンチマークの構築を自動化するための一般的な手法を提案する。
我々は15のプリメードベンチマークと2000以上のXAIベンチマークを生成するコードを提供しています。
- 参考スコア(独自算出の注目度): 6.387263468033964
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While Graph Neural Networks (GNNs) have become the de facto model for learning from structured data, their decisional process remains opaque to the end user, undermining their deployment in safety-critical applications. In the case of graph classification, Explainable Artificial Intelligence (XAI) techniques address this major issue by identifying sub-graph motifs that explain predictions. However, advancements in this field are hindered by a chronic scarcity of benchmark datasets with known ground-truth motifs to assess the explanations' quality. Current graph XAI benchmarks are limited to synthetic data or a handful of real-world tasks hand-curated by domain experts. In this paper, we propose a general method to automate the construction of XAI benchmarks for graph classification from real-world datasets. We provide both 15 ready-made benchmarks, as well as the code to generate more than 2000 additional XAI benchmarks with our method. As a use case, we employ our benchmarks to assess the effectiveness of some popular graph explainers.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は構造化データから学ぶためのデファクトモデルになっているが、その決定プロセスはエンドユーザにとって不透明であり、安全クリティカルなアプリケーションへのデプロイメントを損なう。
グラフ分類の場合、説明可能な人工知能(XAI)技術は、予測を説明するサブグラフモチーフを特定することで、この大きな問題に対処する。
しかし、この分野の進歩は、その説明の質を評価するために、既知の地味なモチーフを持つベンチマークデータセットの慢性的な不足によって妨げられている。
現在のグラフXAIベンチマークは、合成データや、ドメインの専門家が手作業で計算した現実世界のタスクに限られている。
本稿では,実世界のデータセットからグラフ分類のためのXAIベンチマークを構築するための一般的な手法を提案する。
我々は15のプリメードベンチマークと2000以上のXAIベンチマークを生成するコードを提供しています。
ユースケースとして、人気のあるグラフ説明器の有効性を評価するために、ベンチマークを用いています。
関連論文リスト
- AutoG: Towards automatic graph construction from tabular data [60.877867570524884]
本稿では,グラフ構築問題を形式化し,効果的な解法を提案する。
既存の自動工法は特定の場合にのみ適用できる。
本稿では,グラフ構築手法の形式化と評価を行うデータセットについて述べる。
第2に,高品質なグラフスキーマを自動生成するLLMベースのソリューションAutoGを提案する。
論文 参考訳(メタデータ) (2025-01-25T17:31:56Z) - An Automatic Graph Construction Framework based on Large Language Models for Recommendation [49.51799417575638]
本稿では,大規模言語モデルに基づく自動グラフ構築フレームワークであるAutoGraphを紹介する。
LLMはユーザ好みとアイテムの知識を推論し、セマンティックベクターとして符号化する。
潜在因子は、ユーザ/イテムノードをリンクする余分なノードとして組み込まれ、結果として、深いグローバルビューセマンティクスを持つグラフとなる。
論文 参考訳(メタデータ) (2024-12-24T07:51:29Z) - Boosting Graph Neural Network Expressivity with Learnable Lanczos Constraints [7.605749412696919]
グラフニューラルネットワーク(GNN)はグラフ構造化データの処理に優れるが、リンク予測タスクでは性能が劣ることが多い。
グラフラプラシア行列の固有基底に誘導された部分グラフを埋め込むことによりGNNの表現性を高める新しい手法を提案する。
本研究では,2-WLで区別できないグラフを,効率的な時間的複雑性を維持しながら識別できることを実証する。
論文 参考訳(メタデータ) (2024-08-22T12:22:00Z) - Rethinking the Effectiveness of Graph Classification Datasets in Benchmarks for Assessing GNNs [7.407592553310068]
本稿では,単純な手法とGNN間の性能差を調べるための,公正なベンチマークフレームワークに基づく経験的プロトコルを提案する。
また,データセットの複雑性とモデル性能を両立させることにより,データセットの有効性を定量化する新しい指標を提案する。
我々の発見は、ベンチマークデータセットの現在の理解に光を当て、新しいプラットフォームは、グラフ分類ベンチマークの将来的な進化を後押しする可能性がある。
論文 参考訳(メタデータ) (2024-07-06T08:33:23Z) - Benchmarking Node Outlier Detection on Graphs [90.29966986023403]
グラフの外れ値検出は、多くのアプリケーションにおいて、新しいが重要な機械学習タスクである。
UNODと呼ばれるグラフに対して、最初の包括的教師なしノード外乱検出ベンチマークを示す。
論文 参考訳(メタデータ) (2022-06-21T01:46:38Z) - Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
Prediction [123.20238648121445]
我々は、新しい自己教師型学習フレームワーク、グラフ情報支援ノード機能exTraction (GIANT)を提案する。
GIANT は eXtreme Multi-label Classification (XMC) 形式を利用しており、これはグラフ情報に基づいた言語モデルの微調整に不可欠である。
我々は,Open Graph Benchmarkデータセット上での標準GNNパイプラインよりもGIANTの方が優れた性能を示す。
論文 参考訳(メタデータ) (2021-10-29T19:55:12Z) - Neural Network Attribution Methods for Problems in Geoscience: A Novel
Synthetic Benchmark Dataset [0.05156484100374058]
我々は、地質科学における回帰問題に対するアトリビューションベンチマークデータセットを生成するフレームワークを提供する。
シミュレーションの基盤となる機能を学ぶために、完全に接続されたネットワークを訓練する。
異なるXAI手法から得られた推定帰属ヒートマップと基底真理を比較して,特定のXAI手法が良好に機能する事例を同定する。
論文 参考訳(メタデータ) (2021-03-18T03:39:17Z) - Heuristic Semi-Supervised Learning for Graph Generation Inspired by
Electoral College [80.67842220664231]
本稿では,新たなノードやエッジを自動的に拡張して,高密度サブグラフ内のラベル類似性を向上する,新しい前処理手法であるElectoral College(ELCO)を提案する。
テストされたすべての設定において、我々の手法はベースモデルの平均スコアを4.7ポイントの広いマージンで引き上げるとともに、常に最先端のモデルよりも優れています。
論文 参考訳(メタデータ) (2020-06-10T14:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。