Spectral-Spatial Self-Supervised Learning for Few-Shot Hyperspectral Image Classification
- URL: http://arxiv.org/abs/2505.12482v2
- Date: Tue, 20 May 2025 15:28:35 GMT
- Title: Spectral-Spatial Self-Supervised Learning for Few-Shot Hyperspectral Image Classification
- Authors: Wenchen Chen, Yanmei Zhang, Zhongwei Xiao, Jianping Chu, Xingbo Wang,
- Abstract summary: Few-shot classification of hyperspectral images (HSI) faces the challenge of scarce labeled samples.<n>We propose a method, Spectral-Spatial Self-Supervised Learning for Few-Shot Hyperspectral Image Classification (S4L-FSC)
- Score: 3.5876461566779
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot classification of hyperspectral images (HSI) faces the challenge of scarce labeled samples. Self-Supervised learning (SSL) and Few-Shot Learning (FSL) offer promising avenues to address this issue. However, existing methods often struggle to adapt to the spatial geometric diversity of HSIs and lack sufficient spectral prior knowledge. To tackle these challenges, we propose a method, Spectral-Spatial Self-Supervised Learning for Few-Shot Hyperspectral Image Classification (S4L-FSC), aimed at improving the performance of few-shot HSI classification. Specifically, we first leverage heterogeneous datasets to pretrain a spatial feature extractor using a designed Rotation-Mirror Self-Supervised Learning (RM-SSL) method, combined with FSL. This approach enables the model to learn the spatial geometric diversity of HSIs using rotation and mirroring labels as supervisory signals, while acquiring transferable spatial meta-knowledge through few-shot learning. Subsequently, homogeneous datasets are utilized to pretrain a spectral feature extractor via a combination of FSL and Masked Reconstruction Self-Supervised Learning (MR-SSL). The model learns to reconstruct original spectral information from randomly masked spectral vectors, inferring spectral dependencies. In parallel, FSL guides the model to extract pixel-level discriminative features, thereby embedding rich spectral priors into the model. This spectral-spatial pretraining method, along with the integration of knowledge from heterogeneous and homogeneous sources, significantly enhances model performance. Extensive experiments on four HSI datasets demonstrate the effectiveness and superiority of the proposed S4L-FSC approach for few-shot HSI classification.
Related papers
- Structural-Spectral Graph Convolution with Evidential Edge Learning for Hyperspectral Image Clustering [59.24638672786966]
Hyperspectral image (HSI) clustering assigns similar pixels to the same class without any annotations.<n>Existing graph neural networks (GNNs) cannot fully exploit the spectral information of the input HSI.<n>We propose a structural-spectral graph convolutional operator (SSGCO) tailored for graph-structured HSI superpixels.
arXiv Detail & Related papers (2025-06-11T16:41:34Z) - Self-Learning Hyperspectral and Multispectral Image Fusion via Adaptive Residual Guided Subspace Diffusion Model [17.94165288907444]
Hyperspectral and multispectral image (HSI-MSI) fusion involves combining a low-resolution hyperspectral image (LR-HSI) with a high-resolution multispectral image (HR-MSI) to generate a high-resolution hyperspectral image (HR-HSI)
arXiv Detail & Related papers (2025-05-17T03:05:13Z) - CARL: Camera-Agnostic Representation Learning for Spectral Image Analysis [75.25966323298003]
Spectral imaging offers promising applications across diverse domains, including medicine and urban scene understanding.<n> variability in channel dimensionality and captured wavelengths among spectral cameras impede the development of AI-driven methodologies.<n>We introduce $textbfCARL$, a model for $textbfC$amera-$textbfA$gnostic $textbfR$esupervised $textbfL$ across RGB, multispectral, and hyperspectral imaging modalities.
arXiv Detail & Related papers (2025-04-27T13:06:40Z) - Spatial-Spectral Diffusion Contrastive Representation Network for Hyperspectral Image Classification [8.600534616819333]
This paper presents a Spatial-Spectral Diffusion Contrastive Representation Network (DiffCRN)<n>DiffCRN is based on denoising diffusion probabilistic model (DDPM) combined with contrastive learning (CL) for hyperspectral images classification.<n> Experiments conducted on widely used four HSI datasets demonstrate the improved performance of the proposed DiffCRN.
arXiv Detail & Related papers (2025-02-27T02:34:23Z) - Spectral-Spatial Transformer with Active Transfer Learning for Hyperspectral Image Classification [3.446873355279676]
classification of hyperspectral images (HSI) is a challenging task due to the high spectral dimensionality and limited labeled data.<n>We propose a novel multi-stage active transfer learning (ATL) framework that integrates a Spatial-Spectral Transformer (SST) with an active learning process for efficient HSI classification.<n>Experiments on benchmark HSI datasets demonstrate that the SST-ATL framework significantly outperforms existing CNN and SST-based methods.
arXiv Detail & Related papers (2024-11-27T07:53:39Z) - Superpixel Graph Contrastive Clustering with Semantic-Invariant
Augmentations for Hyperspectral Images [64.72242126879503]
Hyperspectral images (HSI) clustering is an important but challenging task.
We first use 3-D and 2-D hybrid convolutional neural networks to extract the high-order spatial and spectral features of HSI.
We then design a superpixel graph contrastive clustering model to learn discriminative superpixel representations.
arXiv Detail & Related papers (2024-03-04T07:40:55Z) - DiffSpectralNet : Unveiling the Potential of Diffusion Models for
Hyperspectral Image Classification [6.521187080027966]
We propose a new network called DiffSpectralNet, which combines diffusion and transformer techniques.
First, we use an unsupervised learning framework based on the diffusion model to extract both high-level and low-level spectral-spatial features.
The diffusion method is capable of extracting diverse and meaningful spectral-spatial features, leading to improvement in HSI classification.
arXiv Detail & Related papers (2023-10-29T15:26:37Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - SpectralDiff: A Generative Framework for Hyperspectral Image
Classification with Diffusion Models [18.391049303136715]
We propose a generative framework for HSI classification with diffusion models (SpectralDiff)
SpectralDiff effectively mines the distribution information of high-dimensional and highly redundant data.
Experiments on three public HSI datasets demonstrate that the proposed method can achieve better performance than state-of-the-art methods.
arXiv Detail & Related papers (2023-04-12T16:32:34Z) - Spectral Enhanced Rectangle Transformer for Hyperspectral Image
Denoising [64.11157141177208]
We propose a spectral enhanced rectangle Transformer to model the spatial and spectral correlation in hyperspectral images.
For the former, we exploit the rectangle self-attention horizontally and vertically to capture the non-local similarity in the spatial domain.
For the latter, we design a spectral enhancement module that is capable of extracting global underlying low-rank property of spatial-spectral cubes to suppress noise.
arXiv Detail & Related papers (2023-04-03T09:42:13Z) - Coarse-to-Fine Sparse Transformer for Hyperspectral Image Reconstruction [138.04956118993934]
We propose a novel Transformer-based method, coarse-to-fine sparse Transformer (CST)
CST embedding HSI sparsity into deep learning for HSI reconstruction.
In particular, CST uses our proposed spectra-aware screening mechanism (SASM) for coarse patch selecting. Then the selected patches are fed into our customized spectra-aggregation hashing multi-head self-attention (SAH-MSA) for fine pixel clustering and self-similarity capturing.
arXiv Detail & Related papers (2022-03-09T16:17:47Z) - Hyperspectral Image Segmentation based on Graph Processing over
Multilayer Networks [51.15952040322895]
One important task of hyperspectral image (HSI) processing is the extraction of spectral-spatial features.
We propose several approaches to HSI segmentation based on M-GSP feature extraction.
Our experimental results demonstrate the strength of M-GSP in HSI processing and spectral-spatial information extraction.
arXiv Detail & Related papers (2021-11-29T23:28:18Z) - Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image
Reconstruction [127.20208645280438]
Hyperspectral image (HSI) reconstruction aims to recover the 3D spatial-spectral signal from a 2D measurement.
Modeling the inter-spectra interactions is beneficial for HSI reconstruction.
Mask-guided Spectral-wise Transformer (MST) proposes a novel framework for HSI reconstruction.
arXiv Detail & Related papers (2021-11-15T16:59:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.