FreqSelect: Frequency-Aware fMRI-to-Image Reconstruction
- URL: http://arxiv.org/abs/2505.12552v1
- Date: Sun, 18 May 2025 21:45:06 GMT
- Title: FreqSelect: Frequency-Aware fMRI-to-Image Reconstruction
- Authors: Junliang Ye, Lei Wang, Md Zakir Hossain,
- Abstract summary: FreqSelect is a lightweight, adaptive module that selectively filters spatial-frequency bands before encoding.<n>It consistently improves reconstruction quality across both low- and high-level metrics.<n>Our method generalizes across subjects and scenes, and holds promise for extension to other modalities.
- Score: 2.243222037947621
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstructing natural images from functional magnetic resonance imaging (fMRI) data remains a core challenge in natural decoding due to the mismatch between the richness of visual stimuli and the noisy, low resolution nature of fMRI signals. While recent two-stage models, combining deep variational autoencoders (VAEs) with diffusion models, have advanced this task, they treat all spatial-frequency components of the input equally. This uniform treatment forces the model to extract meaning features and suppress irrelevant noise simultaneously, limiting its effectiveness. We introduce FreqSelect, a lightweight, adaptive module that selectively filters spatial-frequency bands before encoding. By dynamically emphasizing frequencies that are most predictive of brain activity and suppressing those that are uninformative, FreqSelect acts as a content-aware gate between image features and natural data. It integrates seamlessly into standard very deep VAE-diffusion pipelines and requires no additional supervision. Evaluated on the Natural Scenes dataset, FreqSelect consistently improves reconstruction quality across both low- and high-level metrics. Beyond performance gains, the learned frequency-selection patterns offer interpretable insights into how different visual frequencies are represented in the brain. Our method generalizes across subjects and scenes, and holds promise for extension to other neuroimaging modalities, offering a principled approach to enhancing both decoding accuracy and neuroscientific interpretability.
Related papers
- Frequency-enhanced Multi-granularity Context Network for Efficient Vertebrae Segmentation [33.99418884128739]
We introduce a Frequency-enhanced Multi-granularity Context Network (FMC-Net) to improve vertebrae segmentation accuracy.<n>For the high-frequency components, we apply a High-frequency Feature Refinement (HFR) to amplify the prominence of key features.<n>For the low-frequency components, we use a Multi-granularity State Space Model (MG-SSM) to aggregate feature representations with different receptive fields.
arXiv Detail & Related papers (2025-06-29T04:53:02Z) - Learning Multi-scale Spatial-frequency Features for Image Denoising [58.883244886588336]
We propose a novel multi-scale adaptive dual-domain network (MADNet) for image denoising.<n>We use image pyramid inputs to restore noise-free results from low-resolution images.<n>In order to realize the interaction of high-frequency and low-frequency information, we design an adaptive spatial-frequency learning unit.
arXiv Detail & Related papers (2025-06-19T13:28:09Z) - Freqformer: Image-Demoiréing Transformer via Efficient Frequency Decomposition [83.40450475728792]
We present Freqformer, a Transformer-based framework specifically designed for image demoir'eing through targeted frequency separation.<n>Our method performs an effective frequency decomposition that explicitly splits moir'e patterns into high-frequency spatially-localized textures and low-frequency scale-robust color distortions.<n>Experiments on various demoir'eing benchmarks demonstrate that Freqformer achieves state-of-the-art performance with a compact model size.
arXiv Detail & Related papers (2025-05-25T12:23:10Z) - Cross-Frequency Implicit Neural Representation with Self-Evolving Parameters [52.574661274784916]
Implicit neural representation (INR) has emerged as a powerful paradigm for visual data representation.<n>We propose a self-evolving cross-frequency INR using the Haar wavelet transform (termed CF-INR), which decouples data into four frequency components and employs INRs in the wavelet space.<n>We evaluate CF-INR on a variety of visual data representation and recovery tasks, including image regression, inpainting, denoising, and cloud removal.
arXiv Detail & Related papers (2025-04-15T07:14:35Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - CoNeS: Conditional neural fields with shift modulation for multi-sequence MRI translation [5.662694302758443]
Multi-sequence magnetic resonance imaging (MRI) has found wide applications in both modern clinical studies and deep learning research.
It frequently occurs that one or more of the MRI sequences are missing due to different image acquisition protocols or contrast agent contraindications of patients.
One promising approach is to leverage generative models to synthesize the missing sequences, which can serve as a surrogate acquisition.
arXiv Detail & Related papers (2023-09-06T19:01:58Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
We introduce a unified framework that addresses both fMRI decoding and encoding.
Our model concurrently recovers visual stimuli from fMRI signals and predicts brain activity from images within a unified framework.
arXiv Detail & Related papers (2023-03-26T14:14:58Z) - Natural scene reconstruction from fMRI signals using generative latent
diffusion [1.90365714903665]
We present a two-stage scene reconstruction framework called Brain-Diffuser''
In the first stage, we reconstruct images that capture low-level properties and overall layout using a VDVAE (Very Deep Vari Autoencoder) model.
In the second stage, we use the image-to-image framework of a latent diffusion model conditioned on predicted multimodal (text and visual) features.
arXiv Detail & Related papers (2023-03-09T15:24:26Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
We conduct experiments on three publicly available datasets and evaluate the effect of different preprocessing steps in deep neural networks.
Our results demonstrate that most popular standardization steps add no value to the network performance.
We suggest that image intensity normalization approaches do not contribute to model accuracy because of the reduction of signal variance with image standardization.
arXiv Detail & Related papers (2022-04-11T17:29:36Z) - Diffusion-Weighted Magnetic Resonance Brain Images Generation with
Generative Adversarial Networks and Variational Autoencoders: A Comparison
Study [55.78588835407174]
We show that high quality, diverse and realistic-looking diffusion-weighted magnetic resonance images can be synthesized using deep generative models.
We present two networks, the Introspective Variational Autoencoder and the Style-Based GAN, that qualify for data augmentation in the medical field.
arXiv Detail & Related papers (2020-06-24T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.