論文の概要: A Few Large Shifts: Layer-Inconsistency Based Minimal Overhead Adversarial Example Detection
- arxiv url: http://arxiv.org/abs/2505.12586v2
- Date: Tue, 20 May 2025 02:22:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 12:33:37.436504
- Title: A Few Large Shifts: Layer-Inconsistency Based Minimal Overhead Adversarial Example Detection
- Title(参考訳): 若干の大きなシフト: 層不整合に基づく最小オーバーヘッド逆例検出
- Authors: Sanggeon Yun, Ryozo Masukawa, Hyunwoo Oh, Nathaniel D. Bastian, Mohsen Imani,
- Abstract要約: 我々は、ターゲットモデル自体の内部の階層的不整合を利用して、軽量なプラグイン検出フレームワークを導入する。
本手法は, 計算オーバーヘッドを無視し, 正確さを損なうことなく, 最先端検出性能を実現する。
- 参考スコア(独自算出の注目度): 9.335304254034401
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) are highly susceptible to adversarial examples--subtle, imperceptible perturbations that can lead to incorrect predictions. While detection-based defenses offer a practical alternative to adversarial training, many existing methods depend on external models, complex architectures, heavy augmentations, or adversarial data, limiting their efficiency and generalizability. We introduce a lightweight, plug-in detection framework that leverages internal layer-wise inconsistencies within the target model itself, requiring only benign data for calibration. Our approach is grounded in the A Few Large Shifts Assumption, which posits that adversarial perturbations typically induce large representation shifts in a small subset of layers. Building on this, we propose two complementary strategies--Recovery Testing (RT) and Logit-layer Testing (LT)--to expose internal disruptions caused by adversaries. Evaluated on CIFAR-10, CIFAR-100, and ImageNet under both standard and adaptive threat models, our method achieves state-of-the-art detection performance with negligible computational overhead and no compromise to clean accuracy.
- Abstract(参考訳): ディープ・ニューラル・ネットワーク(DNN)は、敵対的な例に非常に影響を受けやすい。
検出ベースの防御は、敵の訓練に実用的な代替手段を提供するが、既存の多くの手法は、その効率と一般化性を制限するために、外部モデル、複雑なアーキテクチャ、重い拡張、あるいは敵のデータに依存している。
我々は、ターゲットモデル内部の階層的不整合を利用した軽量なプラグイン検出フレームワークを導入し、キャリブレーションのための良質なデータのみを必要とする。
我々のアプローチはA Few Large Shifts Assumption(英語版)に基礎を置いており、これは逆の摂動が典型的に少数の層において大きな表現シフトを引き起こすことを示唆している。
そこで我々は,RT(Recovery Testing)とLT(Logit-layer Testing)という2つの補完的手法を提案する。
CIFAR-10, CIFAR-100, ImageNetを標準および適応脅威モデルの両方で評価し, 計算オーバーヘッドを無視し, 精度を損なうことなく, 最先端検出性能を実現する。
関連論文リスト
- Pulling Back the Curtain: Unsupervised Adversarial Detection via Contrastive Auxiliary Networks [0.0]
本稿では,補助的特徴表現内での敵対行動を明らかにするために,補助的コントラストネットワーク(U-CAN)による教師なし敵検出を提案する。
本手法は、既存の非教師付き対向検出手法を超越し、4つの異なる攻撃方法に対して優れたF1スコアを達成している。
論文 参考訳(メタデータ) (2025-02-13T09:40:26Z) - Advancing Adversarial Robustness Through Adversarial Logit Update [10.041289551532804]
敵の訓練と敵の浄化は最も広く認知されている防衛戦略の一つである。
そこで本稿では,新たな原則であるALU(Adversarial Logit Update)を提案する。
本手法は,幅広い敵攻撃に対する最先端手法と比較して,優れた性能を実現する。
論文 参考訳(メタデータ) (2023-08-29T07:13:31Z) - Adversarial Examples Detection with Enhanced Image Difference Features
based on Local Histogram Equalization [20.132066800052712]
本稿では,高頻度情報強調戦略に基づく逆例検出フレームワークを提案する。
このフレームワークは、敵の例と通常の例との特徴的差異を効果的に抽出し、増幅することができる。
論文 参考訳(メタデータ) (2023-05-08T03:14:01Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
論文 参考訳(メタデータ) (2022-11-04T13:54:02Z) - Improved and Interpretable Defense to Transferred Adversarial Examples
by Jacobian Norm with Selective Input Gradient Regularization [31.516568778193157]
ディープニューラルネットワーク(DNN)の堅牢性を改善するために、AT(Adversarial Training)がよく用いられる。
本研究では,ジャコビアンノルムと選択的入力勾配正規化(J-SIGR)に基づくアプローチを提案する。
実験により、提案したJ-SIGRは、転送された敵攻撃に対するロバスト性を向上し、ニューラルネットワークからの予測が容易に解釈できることが示されている。
論文 参考訳(メタデータ) (2022-07-09T01:06:41Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
モデルトレーニングに敵の例を注入する最も効果的な戦略は、敵のトレーニングであることが証明されている。
本稿では, LAtent bounDary-guided aDvErsarial tRaining という新たな逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-08T07:40:55Z) - Combating Adversaries with Anti-Adversaries [118.70141983415445]
特に、我々の層は、逆の層とは反対の方向に入力摂動を生成します。
我々は,我々の階層と名目および頑健に訓練されたモデルを組み合わせることで,我々のアプローチの有効性を検証する。
我々の対向層は、クリーンな精度でコストを伴わずにモデルロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2021-03-26T09:36:59Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
本稿では,属性空間への分類器の露出を最大化するために,新しいサンプルを生成することを学習する逆学習手法を提案する。
我々のアプローチは、ディープニューラルネットワークが自然に発生する摂動に対して堅牢であることを可能にする。
論文 参考訳(メタデータ) (2020-12-03T10:17:30Z) - FADER: Fast Adversarial Example Rejection [19.305796826768425]
近年の防御は, 異なる層表現における正統な訓練試料からの異常な偏差を検出することにより, 対向的堅牢性を向上させることが示されている。
本稿では,検出に基づく手法を高速化する新しい手法であるFADERを紹介する。
実験では,MNISTデータセットの解析値と比較すると,最大73倍の試作機,CIFAR10の最大50倍の試作機について概説した。
論文 参考訳(メタデータ) (2020-10-18T22:00:11Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
逆行訓練(AT)は、逆行例によるトレーニングデータを増やすことにより、モデルロバスト性を改善する最も効果的な手法の一つである。
既存のAT手法の多くは、敵の例を作らせるために特定の攻撃を採用しており、他の目に見えない攻撃に対する信頼性の低い堅牢性につながっている。
本稿では,ロバストモデル学習のための新しいフレームワークであるADTを紹介する。
論文 参考訳(メタデータ) (2020-02-14T12:36:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。