論文の概要: Adaptive Graph Unlearning
- arxiv url: http://arxiv.org/abs/2505.12614v1
- Date: Mon, 19 May 2025 01:56:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:11.345606
- Title: Adaptive Graph Unlearning
- Title(参考訳): 適応型グラフアンラーニング
- Authors: Pengfei Ding, Yan Wang, Guanfeng Liu, Jiajie Zhu,
- Abstract要約: AGUは、多様な未学習タスクやGNNアーキテクチャに柔軟に対応する、新しいAdaptive Graph Unlearningフレームワークである。
AGUは、残りのグラフの完全性を維持しながら、削除された要素を完全に忘れることを保証する。
また、GNNアーキテクチャごとに影響を受ける隣人を正確に識別し、未学習のパフォーマンスを高めるために重要なものを優先順位付けする。
- 参考スコア(独自算出の注目度): 9.776144370922086
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph unlearning, which deletes graph elements such as nodes and edges from trained graph neural networks (GNNs), is crucial for real-world applications where graph data may contain outdated, inaccurate, or privacy-sensitive information. However, existing methods often suffer from (1) incomplete or over unlearning due to neglecting the distinct objectives of different unlearning tasks, and (2) inaccurate identification of neighbors affected by deleted elements across various GNN architectures. To address these limitations, we propose AGU, a novel Adaptive Graph Unlearning framework that flexibly adapts to diverse unlearning tasks and GNN architectures. AGU ensures the complete forgetting of deleted elements while preserving the integrity of the remaining graph. It also accurately identifies affected neighbors for each GNN architecture and prioritizes important ones to enhance unlearning performance. Extensive experiments on seven real-world graphs demonstrate that AGU outperforms existing methods in terms of effectiveness, efficiency, and unlearning capability.
- Abstract(参考訳): トレーニングされたグラフニューラルネットワーク(GNN)からノードやエッジなどのグラフ要素を削除するグラフアンラーニングは、グラフデータが時代遅れ、不正確な、あるいはプライバシに敏感な情報を含むような現実のアプリケーションにとって不可欠である。
しかし,既存の手法では,(1)異なる未学習課題の異なる目的を無視した上で,(1)不完全あるいは過度の未学習に悩まされることが多い。
このような制約に対処するために,多様な未学習タスクやGNNアーキテクチャに柔軟に対応する新しい適応グラフアンラーニングフレームワークであるAGUを提案する。
AGUは、残りのグラフの完全性を維持しながら、削除された要素を完全に忘れることを保証する。
また、GNNアーキテクチャごとに影響を受ける隣人を正確に識別し、未学習のパフォーマンスを高めるために重要なものを優先順位付けする。
7つの実世界のグラフに関する大規模な実験により、AGUは、有効性、効率性、未学習能力の点で既存の手法より優れていることが示された。
関連論文リスト
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
グラフレベルグラフニューラルネットワーク(GNN)のための統一評価フレームワークを提案する。
このフレームワークは、さまざまなデータセットにわたるGNNを評価するための標準化された設定を提供する。
また,表現性の向上と一般化機能を備えた新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2025-01-01T08:48:53Z) - MDS-GNN: A Mutual Dual-Stream Graph Neural Network on Graphs with Incomplete Features and Structure [8.00268216176428]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから表現を分析し学習するための強力なツールとして登場した。
GNNの卓越した性能にとって重要な前提条件は、完全なグラフ情報の提供である。
本研究では,特徴と構造間の相互利益学習を実装した相互二重ストリームグラフニューラルネットワーク(MDS-GNN)を提案する。
論文 参考訳(メタデータ) (2024-08-09T03:42:56Z) - Dynamic Graph Unlearning: A General and Efficient Post-Processing Method via Gradient Transformation [24.20087360102464]
動的グラフアンラーニングを初めて研究し、DGNNアンラーニングを実装するための効率的で効率的で汎用的で後処理手法を提案する。
提案手法は,将来的な未学習要求を処理できる可能性があり,性能が大幅に向上する。
論文 参考訳(メタデータ) (2024-05-23T10:26:18Z) - Loss-aware Curriculum Learning for Heterogeneous Graph Neural Networks [30.333265803394998]
異種グラフニューラルネットワーク(GNN)の性能向上のためのカリキュラム学習手法の適用について検討する。
データの品質をよりよく分類するために、データの全ノードの品質を測定するLTSと呼ばれる損失認識トレーニングスケジュールを設計する。
本研究は,複雑なグラフ構造データ解析のためのHGNNの能力向上のためのカリキュラム学習の有効性を示すものである。
論文 参考訳(メタデータ) (2024-02-29T05:44:41Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
我々は、弱い情報(GLWI)を用いたグラフ学習問題に対する原則的アプローチを開発する。
非完全構造を持つ入力グラフ上で長距離情報伝搬を行うデュアルチャネルGNNフレームワークであるD$2$PTを提案するが、グローバルな意味的類似性を符号化するグローバルグラフも提案する。
論文 参考訳(メタデータ) (2023-05-29T04:51:09Z) - GIF: A General Graph Unlearning Strategy via Influence Function [63.52038638220563]
Graph Influence Function (GIF)は、削除されたデータにおける$epsilon$-massの摂動に応答してパラメータの変化を効率的に正確に推定できる、モデルに依存しない未学習の手法である。
我々は,4つの代表的GNNモデルと3つのベンチマークデータセットについて広範な実験を行い,未学習の有効性,モデルの有用性,未学習効率の観点からGIFの優位性を正当化する。
論文 参考訳(メタデータ) (2023-04-06T03:02:54Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
本稿では、入力グラフと下流タスクに基づいて最適な曲率を適応的に学習する適応曲率探索ハイパーボリックグラフニューラルネットワークACE-HGNNを提案する。
複数の実世界のグラフデータセットの実験は、競争性能と優れた一般化能力を備えたモデル品質において、顕著で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-10-15T07:18:57Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。