論文の概要: Know3-RAG: A Knowledge-aware RAG Framework with Adaptive Retrieval, Generation, and Filtering
- arxiv url: http://arxiv.org/abs/2505.12662v1
- Date: Mon, 19 May 2025 03:25:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:11.379228
- Title: Know3-RAG: A Knowledge-aware RAG Framework with Adaptive Retrieval, Generation, and Filtering
- Title(参考訳): Know3-RAG: 適応検索,生成,フィルタリングを備えた知識対応RAGフレームワーク
- Authors: Xukai Liu, Ye Liu, Shiwen Wu, Yanghai Zhang, Yihao Yuan, Kai Zhang, Qi Liu,
- Abstract要約: 我々は知識グラフ(KG)から構造化知識を活用する知識認識RAGフレームワークであるKnow3-RAGを提案し、検索、生成、フィルタリングを含むRAGプロセスの3つの中核段階を導出する。
複数のオープンドメインQAベンチマークの実験では、Know3-RAGは強いベースラインを一貫して上回り、幻覚を著しく減らし、回答の信頼性を向上している。
- 参考スコア(独自算出の注目度): 9.814926166669366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in large language models (LLMs) have led to impressive progress in natural language generation, yet their tendency to produce hallucinated or unsubstantiated content remains a critical concern. To improve factual reliability, Retrieval-Augmented Generation (RAG) integrates external knowledge during inference. However, existing RAG systems face two major limitations: (1) unreliable adaptive control due to limited external knowledge supervision, and (2) hallucinations caused by inaccurate or irrelevant references. To address these issues, we propose Know3-RAG, a knowledge-aware RAG framework that leverages structured knowledge from knowledge graphs (KGs) to guide three core stages of the RAG process, including retrieval, generation, and filtering. Specifically, we introduce a knowledge-aware adaptive retrieval module that employs KG embedding to assess the confidence of the generated answer and determine retrieval necessity, a knowledge-enhanced reference generation strategy that enriches queries with KG-derived entities to improve generated reference relevance, and a knowledge-driven reference filtering mechanism that ensures semantic alignment and factual accuracy of references. Experiments on multiple open-domain QA benchmarks demonstrate that Know3-RAG consistently outperforms strong baselines, significantly reducing hallucinations and enhancing answer reliability.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は、自然言語生成の顕著な進歩をもたらしたが、幻覚的あるいは未実証なコンテンツを生み出す傾向は、依然として重要な関心事である。
現実的信頼性を向上させるために、検索型拡張生成(RAG)は推論中に外部知識を統合する。
しかし,既存のRAGシステムでは,(1)外部知識の限られた監督による信頼できない適応制御,(2)不正確な参照や無関係参照による幻覚の2つの大きな制限に直面している。
このような問題に対処するために,知識グラフ(KG)からの構造化知識を活用する知識認識RAGフレームワークであるKnow3-RAGを提案する。
具体的には、KG埋め込みを利用して生成した回答の信頼性を評価し、検索の必要性を決定する知識適応型検索モジュールと、生成した参照関連性を改善するためにKG由来のエンティティとのクエリを強化する知識強化参照生成戦略と、参照のセマンティックアライメントと事実的正確性を保証する知識駆動参照フィルタリング機構を導入する。
複数のオープンドメインQAベンチマークの実験では、Know3-RAGは強いベースラインを一貫して上回り、幻覚を著しく減らし、回答の信頼性を向上している。
関連論文リスト
- RGAR: Recurrence Generation-augmented Retrieval for Factual-aware Medical Question Answering [29.065294682044]
現在のパラダイムであるRetrieval-Augmented Generation (RAG)は、大規模なコーパス検索を通じて専門的な医療知識を取得する。
本稿では,2つの情報源から関連する事実知識と概念知識の両方を検索する再帰生成拡張検索フレームワークであるRGARを紹介する。
論文 参考訳(メタデータ) (2025-02-19T01:50:10Z) - Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey [92.36487127683053]
Retrieval-Augmented Generation (RAG)は、AIGC(AIGC)の課題に対処するために設計された高度な技術である。
RAGは信頼性と最新の外部知識を提供し、幻覚を減らし、幅広いタスクで関連するコンテキストを保証する。
RAGの成功と可能性にもかかわらず、最近の研究により、RAGパラダイムはプライバシーの懸念、敵対的攻撃、説明責任の問題など、新たなリスクももたらしていることが示されている。
論文 参考訳(メタデータ) (2025-02-08T06:50:47Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAGは、RAGシステムが解答不能なクエリを効果的に処理できるかどうかを評価するために設計されたフレームワークである。
我々は、6つの未解決カテゴリを持つ分類を定義し、UAEval4RAGは、多様で挑戦的なクエリを自動的に合成する。
論文 参考訳(メタデータ) (2024-12-16T19:11:55Z) - DeepNote: Note-Centric Deep Retrieval-Augmented Generation [72.70046559930555]
Retrieval-Augmented Generation (RAG)は質問応答のための大規模言語モデル(LLM)における事実誤りと幻覚を緩和する
我々は、ノート中心の適応検索により、知識ソースの奥深くで堅牢な探索を実現する適応RAGフレームワークであるDeepNoteを開発した。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - Retrieving, Rethinking and Revising: The Chain-of-Verification Can Improve Retrieval Augmented Generation [38.80878966092216]
大規模言語モデル(LLM)の強化を目的とした最近の検索拡張生成(RAG)
本稿では,外部検索の正しさと内部生成の整合性を高めるためのチェーン・オブ・バリフィケーション(CoV-RAG)を提案する。
論文 参考訳(メタデータ) (2024-10-08T08:34:54Z) - REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain Question Answering [115.72130322143275]
REAR(Relevance-Aware Retrieval-augmented approach for open-domain Question answering, QA)
我々は,特殊な設計のアセスメントモジュールを組み込むことで,LLMベースのRAGシステムのための新しいアーキテクチャを開発する。
オープンドメインの4つのQAタスクの実験では、REARは以前の競争力のあるRAGアプローチよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-02-27T13:22:51Z) - Retrieval-Augmented Generation for Large Language Models: A Survey [17.82361213043507]
大きな言語モデル(LLM)には印象的な能力があるが、幻覚のような課題に直面している。
Retrieval-Augmented Generation (RAG) は,外部データベースからの知識を取り入れた,有望なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-12-18T07:47:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。