論文の概要: The Gaussian Latent Machine: Efficient Prior and Posterior Sampling for Inverse Problems
- arxiv url: http://arxiv.org/abs/2505.12836v1
- Date: Mon, 19 May 2025 08:21:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:11.483331
- Title: The Gaussian Latent Machine: Efficient Prior and Posterior Sampling for Inverse Problems
- Title(参考訳): ガウス潜在機械--逆問題に対する効率的な事前サンプリングと後方サンプリング-
- Authors: Muhamed Kuric, Martin Zach, Andreas Habring, Michael Unser, Thomas Pock,
- Abstract要約: 本稿では,新しい潜伏変数モデルに容易に適用可能であることを示す。
これにより、多くの既存のサンプリングアルゴリズムを統一し一般化する一般的なサンプリング手法が導かれる。
- 参考スコア(独自算出の注目度): 19.914084083626694
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of sampling from a product-of-experts-type model that encompasses many standard prior and posterior distributions commonly found in Bayesian imaging. We show that this model can be easily lifted into a novel latent variable model, which we refer to as a Gaussian latent machine. This leads to a general sampling approach that unifies and generalizes many existing sampling algorithms in the literature. Most notably, it yields a highly efficient and effective two-block Gibbs sampling approach in the general case, while also specializing to direct sampling algorithms in particular cases. Finally, we present detailed numerical experiments that demonstrate the efficiency and effectiveness of our proposed sampling approach across a wide range of prior and posterior sampling problems from Bayesian imaging.
- Abstract(参考訳): 本稿では,ベイズ画像でよく見られる多くの標準前・後部分布を包含する製品設計モデルから抽出する問題を考察する。
このモデルは、ガウス潜在機械と呼ばれる新しい潜在変数モデルに容易に持ち上げられることを示す。
これにより、文献における多くの既存のサンプリングアルゴリズムを統一し、一般化する一般的なサンプリング手法が導かれる。
最も注目すべきは、特に直接サンプリングアルゴリズムに特化しながら、一般的に非常に効率的で効果的な2ブロックギブスサンプリングアプローチが得られることである。
最後に,ベイズ画像から得られた様々な先行サンプリング問題と後続サンプリング問題に対して,提案手法の有効性と有効性を示す数値実験について述べる。
関連論文リスト
- Arbitrary-steps Image Super-resolution via Diffusion Inversion [68.78628844966019]
本研究では,拡散インバージョンに基づく新しい画像超解像(SR)手法を提案する。
本研究では,拡散モデルの中間状態を構築するための部分雑音予測戦略を設計する。
トレーニングが完了すると、このノイズ予測器を使用して、拡散軌道に沿ってサンプリングプロセスを部分的に初期化し、望ましい高分解能結果を生成する。
論文 参考訳(メタデータ) (2024-12-12T07:24:13Z) - Low-rank Bayesian matrix completion via geodesic Hamiltonian Monte Carlo on Stiefel manifolds [0.18416014644193066]
低ランクベイズ行列の効率的な計算を可能にするための新しいサンプリングベース手法を提案する。
提案手法は, 標準ギブスサンプリング器で発生するサンプリング困難を, 行列完備化に使用される一般的な2つの行列因子化のために解決することを示す。
数値的な例は、より優れた混合と定常分布への高速収束を含む優れたサンプリング性能を示す。
論文 参考訳(メタデータ) (2024-10-27T03:12:53Z) - Solving Linear Inverse Problems Provably via Posterior Sampling with
Latent Diffusion Models [98.95988351420334]
本稿では,事前学習した潜在拡散モデルを利用した線形逆問題の解法を初めて提案する。
線形モデル設定において,証明可能なサンプル回復を示すアルゴリズムを理論的に解析する。
論文 参考訳(メタデータ) (2023-07-02T17:21:30Z) - Plug-and-Play split Gibbs sampler: embedding deep generative priors in
Bayesian inference [12.91637880428221]
本稿では, 後方分布から効率的にサンプリングするために, 可変分割を利用したプラグアンドプレイサンプリングアルゴリズムを提案する。
後方サンプリングの課題を2つの単純なサンプリング問題に分割する。
その性能は最近の最先端の最適化とサンプリング手法と比較される。
論文 参考訳(メタデータ) (2023-04-21T17:17:51Z) - Nested sampling with any prior you like [0.0]
所望の事前密度からサンプルに基づいて訓練されたビジェクターは、変換を構築するための汎用的な方法を提供する。
宇宙論の例を多数挙げて, トレーニングされたビジェクターとネストサンプリングの併用を実演する。
論文 参考訳(メタデータ) (2021-02-24T18:45:13Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
ガウス過程後部をシミュレーションするための従来のアプローチでは、有限個の入力位置のプロセス値の限界分布からサンプルを抽出する。
この分布中心の特徴づけは、所望のランダムベクトルのサイズで3次スケールする生成戦略をもたらす。
条件付けのこのパスワイズ解釈が、ガウス過程の後部を効率的にサンプリングするのに役立てる近似の一般族をいかに生み出すかを示す。
論文 参考訳(メタデータ) (2020-11-08T17:09:37Z) - Analysis and Design of Thompson Sampling for Stochastic Partial
Monitoring [91.22679787578438]
部分モニタリングのためのトンプソンサンプリングに基づく新しいアルゴリズムを提案する。
局所可観測性を持つ問題の線形化変種に対して,新たなアルゴリズムが対数問題依存の擬似回帰$mathrmO(log T)$を達成することを証明した。
論文 参考訳(メタデータ) (2020-06-17T05:48:33Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
高速後部サンプリングのための簡易かつ汎用的なアプローチを提案する。
分離されたサンプルパスがガウス過程の後部を通常のコストのごく一部で正確に表現する方法を実証する。
論文 参考訳(メタデータ) (2020-02-21T14:03:16Z) - Ensemble Sampling [18.85309520133554]
本稿では,ニューラルネットワークのような複雑なモデルに直面した場合でも,トラクタビリティを維持しつつ,トンプソンサンプリングを近似するアンサンブルサンプリングを開発する。
我々は、このアプローチを支持する理論的基盤を確立し、さらなる洞察を提供する計算結果を示す。
論文 参考訳(メタデータ) (2017-05-20T19:36:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。