論文の概要: LEXam: Benchmarking Legal Reasoning on 340 Law Exams
- arxiv url: http://arxiv.org/abs/2505.12864v1
- Date: Mon, 19 May 2025 08:48:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:11.496922
- Title: LEXam: Benchmarking Legal Reasoning on 340 Law Exams
- Title(参考訳): LEXam:340件の法律審査に関するベンチマーク
- Authors: Yu Fan, Jingwei Ni, Jakob Merane, Etienne Salimbeni, Yang Tian, Yoan Hermstrüwer, Yinya Huang, Mubashara Akhtar, Florian Geering, Oliver Dreyer, Daniel Brunner, Markus Leippold, Mrinmaya Sachan, Alexander Stremitzer, Christoph Engel, Elliott Ash, Joel Niklaus,
- Abstract要約: LEXamは、様々な科目と学位レベルの116の法学校コースにまたがる340の法試験から派生した、新しいベンチマークである。
このデータセットは、英語とドイツ語で4,886の法試験の質問で構成されており、その中には2,841の長文のオープンエンドの質問と2,045のマルチチョイスの質問が含まれている。
- 参考スコア(独自算出の注目度): 61.344330783528015
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Long-form legal reasoning remains a key challenge for large language models (LLMs) in spite of recent advances in test-time scaling. We introduce LEXam, a novel benchmark derived from 340 law exams spanning 116 law school courses across a range of subjects and degree levels. The dataset comprises 4,886 law exam questions in English and German, including 2,841 long-form, open-ended questions and 2,045 multiple-choice questions. Besides reference answers, the open questions are also accompanied by explicit guidance outlining the expected legal reasoning approach such as issue spotting, rule recall, or rule application. Our evaluation on both open-ended and multiple-choice questions present significant challenges for current LLMs; in particular, they notably struggle with open questions that require structured, multi-step legal reasoning. Moreover, our results underscore the effectiveness of the dataset in differentiating between models with varying capabilities. Adopting an LLM-as-a-Judge paradigm with rigorous human expert validation, we demonstrate how model-generated reasoning steps can be evaluated consistently and accurately. Our evaluation setup provides a scalable method to assess legal reasoning quality beyond simple accuracy metrics. Project page: https://lexam-benchmark.github.io/
- Abstract(参考訳): 長期の法的推論は、テスト時間スケーリングの最近の進歩にもかかわらず、大きな言語モデル(LLM)にとって重要な課題である。
LEXamは116の法科コースにまたがる340の法学試験から派生した新しいベンチマークである。
このデータセットは、英語とドイツ語で4,886の法試験質問で構成されており、その中には2,841の長文のオープンエンド質問と2,045の多重選択質問が含まれている。
参照回答の他に、オープンな質問には、問題スポッティングやルールリコール、ルール適用といった、期待される法的推論アプローチの概要を明示的なガイダンスが伴っている。
オープンエンドと複数選択の両質問に対する評価は,現在のLLMにおいて重要な課題を呈している。
さらに,本研究の結果は,異なる機能を持つモデル間の差別化におけるデータセットの有効性を裏付けるものである。
LLM-as-a-Judgeパラダイムを厳密な人間専門家の検証に応用し、モデル生成の推論ステップを一貫して正確に評価する方法を実証する。
我々の評価設定は、単純な精度のメトリクスを超えて、法的な推論品質を評価するスケーラブルな方法を提供する。
プロジェクトページ: https://lexam-benchmark.github.io/
関連論文リスト
- AnnoCaseLaw: A Richly-Annotated Dataset For Benchmarking Explainable Legal Judgment Prediction [56.797874973414636]
AnnoCaseLawは、アメリカ合衆国控訴裁判所の無視事件を慎重に注釈付けした471のデータセットである。
我々のデータセットは、より人間らしく説明可能な法的な判断予測モデルの基礎となる。
その結果、LJPは依然として厳しい課題であり、法的な前例の適用は特に困難であることが示されている。
論文 参考訳(メタデータ) (2025-02-28T19:14:48Z) - LegalBench.PT: A Benchmark for Portuguese Law [17.554201334646056]
ポルトガル法の主要な領域をカバーする最初の総合的な法定ベンチマークである LegalBench.PT を提示する。
まず、実法試験から長文の質問と回答を収集し、次に、GPT-4oを使って、それらを多重選択、真/偽、マッチングフォーマットに変換する。
論文 参考訳(メタデータ) (2025-02-22T21:07:12Z) - Legal Evalutions and Challenges of Large Language Models [42.51294752406578]
我々は,OPENAI o1モデルを事例研究として,法律規定の適用における大規模モデルの性能評価に利用した。
我々は、オープンソース、クローズドソース、および法律ドメインのために特別に訓練された法律固有のモデルを含む、最先端のLLMを比較します。
論文 参考訳(メタデータ) (2024-11-15T12:23:12Z) - LLM vs. Lawyers: Identifying a Subset of Summary Judgments in a Large UK
Case Law Dataset [0.0]
本研究は, 英国裁判所判決の大規模コーパスから, 判例, 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、
我々は、ケンブリッジ法コーパス356,011英国の裁判所決定を用いて、大きな言語モデルは、キーワードに対して重み付けされたF1スコアが0.94対0.78であると判断する。
我々は,3,102件の要約判断事例を同定し抽出し,その分布を時間的範囲の様々な英国裁判所にマップできるようにする。
論文 参考訳(メタデータ) (2024-03-04T10:13:30Z) - A Comprehensive Evaluation of Large Language Models on Legal Judgment
Prediction [60.70089334782383]
大規模言語モデル(LLM)は、ドメイン固有のアプリケーションに大きな可能性を示している。
GPT-4の法律評価をめぐる近年の論争は、現実の法的タスクにおけるパフォーマンスに関する疑問を提起している。
我々は,LLMに基づく実践的ベースラインソリューションを設計し,法的判断予測の課題を検証した。
論文 参考訳(メタデータ) (2023-10-18T07:38:04Z) - Large Language Models can Learn Rules [106.40747309894236]
大規模言語モデル(LLM)を用いた推論のためのルールライブラリを学習するフレームワークであるHtTを提案する。
リレーショナル推論、数値推論、概念学習に関する実験は、HtTが既存のプロンプト法を改善することを示す。
学習されたルールは、異なるモデルや同じ問題の異なる形式にも転送可能である。
論文 参考訳(メタデータ) (2023-10-10T23:07:01Z) - Interpretable Long-Form Legal Question Answering with
Retrieval-Augmented Large Language Models [10.834755282333589]
長文の法的問合せデータセットは、専門家によるフランス語の法的質問1,868件からなる。
実験結果から,自動評価指標について有望な性能を示した。
LLeQAは、専門家によって注釈付けされた唯一の包括的なロングフォームLQAデータセットの1つであり、重要な現実世界の問題を解決するために研究を加速するだけでなく、特殊な領域におけるNLPモデルを評価するための厳密なベンチマークとしても機能する可能性がある。
論文 参考訳(メタデータ) (2023-09-29T08:23:19Z) - The Legal Argument Reasoning Task in Civil Procedure [2.079168053329397]
我々は,米国民事訴訟の領域から新たなNLPタスクとデータセットを提示する。
データセットの各インスタンスは、ケースの一般的な導入、特定の質問、可能な解決策引数で構成されている。
論文 参考訳(メタデータ) (2022-11-05T17:41:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。