Hardware-Adaptive and Superlinear-Capacity Memristor-based Associative Memory
- URL: http://arxiv.org/abs/2505.12960v1
- Date: Mon, 19 May 2025 10:55:09 GMT
- Title: Hardware-Adaptive and Superlinear-Capacity Memristor-based Associative Memory
- Authors: Chengping He, Mingrui Jiang, Keyi Shan, Szu-Hao Yang, Zefan Li, Shengbo Wang, Giacomo Pedretti, Jim Ignowski, Can Li,
- Abstract summary: We introduce and experimentally demonstrate on integrated memristor hardware a new hardware-adaptive learning algorithm for associative memories.<n>Our approach achieves 3x effective capacity under 50% device faults compared to state-of-the-art methods.
- Score: 5.902429789895426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain-inspired computing aims to mimic cognitive functions like associative memory, the ability to recall complete patterns from partial cues. Memristor technology offers promising hardware for such neuromorphic systems due to its potential for efficient in-memory analog computing. Hopfield Neural Networks (HNNs) are a classic model for associative memory, but implementations on conventional hardware suffer from efficiency bottlenecks, while prior memristor-based HNNs faced challenges with vulnerability to hardware defects due to offline training, limited storage capacity, and difficulty processing analog patterns. Here we introduce and experimentally demonstrate on integrated memristor hardware a new hardware-adaptive learning algorithm for associative memories that significantly improves defect tolerance and capacity, and naturally extends to scalable multilayer architectures capable of handling both binary and continuous patterns. Our approach achieves 3x effective capacity under 50% device faults compared to state-of-the-art methods. Furthermore, its extension to multilayer architectures enables superlinear capacity scaling (\(\propto N^{1.49}\ for binary patterns) and effective recalling of continuous patterns (\propto N^{1.74}\ scaling), as compared to linear capacity scaling for previous HNNs. It also provides flexibility to adjust capacity by tuning hidden neurons for the same-sized patterns. By leveraging the massive parallelism of the hardware enabled by synchronous updates, it reduces energy by 8.8x and latency by 99.7% for 64-dimensional patterns over asynchronous schemes, with greater improvements at scale. This promises the development of more reliable memristor-based associative memory systems and enables new applications research due to the significantly improved capacity, efficiency, and flexibility.
Related papers
- Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
Traditional signal reconstruction methods on digital computers face both software and hardware challenges.
We propose a systematic approach with software-hardware co-optimizations for signal reconstruction from sparse inputs.
This work advances the AI-driven signal restoration technology and paves the way for future efficient and robust medical AI and 3D vision applications.
arXiv Detail & Related papers (2024-04-15T09:33:09Z) - Resistive Memory-based Neural Differential Equation Solver for Score-based Diffusion Model [55.116403765330084]
Current AIGC methods, such as score-based diffusion, are still deficient in terms of rapidity and efficiency.
We propose a time-continuous and analog in-memory neural differential equation solver for score-based diffusion.
We experimentally validate our solution with 180 nm resistive memory in-memory computing macros.
arXiv Detail & Related papers (2024-04-08T16:34:35Z) - Pruning random resistive memory for optimizing analogue AI [54.21621702814583]
AI models present unprecedented challenges to energy consumption and environmental sustainability.
One promising solution is to revisit analogue computing, a technique that predates digital computing.
Here, we report a universal solution, software-hardware co-design using structural plasticity-inspired edge pruning.
arXiv Detail & Related papers (2023-11-13T08:59:01Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
We introduce a novel heterogeneous memory augmentation approach for neural networks.
By introducing learnable memory tokens with attention mechanism, we can effectively boost performance without huge computational overhead.
We show our approach on various image and graph-based tasks under both in-distribution (ID) and out-of-distribution (OOD) conditions.
arXiv Detail & Related papers (2023-10-17T01:05:28Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
Layer-wise Feedback feedback (LFP) is a novel training principle for neural network-like predictors.<n>LFP decomposes a reward to individual neurons based on their respective contributions.<n>Our method then implements a greedy reinforcing approach helpful parts of the network and weakening harmful ones.
arXiv Detail & Related papers (2023-08-23T10:48:28Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - Biologically Plausible Learning on Neuromorphic Hardware Architectures [27.138481022472]
Neuromorphic computing is an emerging paradigm that confronts this imbalance by computations directly in analog memories.
This work is the first to compare the impact of different learning algorithms on Compute-In-Memory-based hardware and vice versa.
arXiv Detail & Related papers (2022-12-29T15:10:59Z) - Experimentally realized memristive memory augmented neural network [0.0]
Lifelong on-device learning is a key challenge for machine intelligence.
Memory augmented neural network has been proposed to achieve the goal, but the memory module has to be stored in an off-chip memory.
We implement the entire memory augmented neural network architecture in a fully integrated memristive crossbar platform.
arXiv Detail & Related papers (2022-04-15T11:52:30Z) - Towards Memory-Efficient Neural Networks via Multi-Level in situ
Generation [10.563649948220371]
Deep neural networks (DNN) have shown superior performance in a variety of tasks.
As they rapidly evolve, their escalating computation and memory demands make it challenging to deploy them on resource-constrained edge devices.
We propose a general and unified framework to trade expensive memory transactions with ultra-fast on-chip computations.
arXiv Detail & Related papers (2021-08-25T18:50:24Z) - Robust High-dimensional Memory-augmented Neural Networks [13.82206983716435]
Memory-augmented neural networks enhance neural networks with an explicit memory to overcome these issues.
Access to this explicit memory occurs via soft read and write operations involving every individual memory entry.
We propose a robust architecture that employs a computational memory unit as the explicit memory performing analog in-memory computation on high-dimensional (HD) vectors.
arXiv Detail & Related papers (2020-10-05T12:01:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.