論文の概要: Simplicity is Key: An Unsupervised Pretraining Approach for Sparse Radio Channels
- arxiv url: http://arxiv.org/abs/2505.13055v1
- Date: Mon, 19 May 2025 12:43:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:11.594527
- Title: Simplicity is Key: An Unsupervised Pretraining Approach for Sparse Radio Channels
- Title(参考訳): Simplicity is Key: An Unsupervised Pretraining Approach for Sparse Radio Channels
- Authors: Jonathan Ott, Maximilian Stahlke, Tobias Feigl, Bjoern M. Eskofier, Christopher Mutschler,
- Abstract要約: SpaRTranは、無線チャネルの圧縮センシングに基づく教師なし表現学習手法である。
SpaRTranは、無線信号の微調整時に最先端の手法と比較してエラーを最大85%削減する。
- 参考スコア(独自算出の注目度): 4.579605201643071
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce the Sparse pretrained Radio Transformer (SpaRTran), an unsupervised representation learning approach based on the concept of compressed sensing for radio channels. Our approach learns embeddings that focus on the physical properties of radio propagation, to create the optimal basis for fine-tuning on radio-based downstream tasks. SpaRTran uses a sparse gated autoencoder that induces a simplicity bias to the learned representations, resembling the sparse nature of radio propagation. For signal reconstruction, it learns a dictionary that holds atomic features, which increases flexibility across signal waveforms and spatiotemporal signal patterns. Our experiments show that SpaRTran reduces errors by up to 85 % compared to state-of-the-art methods when fine-tuned on radio fingerprinting, a challenging downstream task. In addition, our method requires less pretraining effort and offers greater flexibility, as we train it solely on individual radio signals. SpaRTran serves as an excellent base model that can be fine-tuned for various radio-based downstream tasks, effectively reducing the cost for labeling. In addition, it is significantly more versatile than existing methods and demonstrates superior generalization.
- Abstract(参考訳): 本稿では,SpaRTran(Sparse Pretrained Radio Transformer)を提案する。
提案手法は,無線伝搬の物理特性に着目した埋め込みを学習し,無線を用いた下流タスクの微調整に最適な基礎を創出する。
SpaRTranはスパースゲートオートエンコーダを使用し、無線伝搬のスパースな性質に似た、学習された表現に対する単純さのバイアスを誘導する。
信号再構成のために、原子の特徴を持つ辞書を学習し、信号波形と時空間信号パターンの柔軟性を向上させる。
実験の結果,SpaRTranは,無線指紋認証を微調整した場合の最先端手法と比較して,エラーを最大85%削減できることがわかった。
さらに,本手法では,個別の無線信号に対してのみトレーニングを行うため,事前学習の労力が少なく,柔軟性も向上する。
SpaRTranは、様々な無線ベースの下流タスクに微調整できる優れたベースモデルとして機能し、ラベリングのコストを効果的に削減する。
さらに、既存の方法よりもはるかに多用途であり、より優れた一般化を示す。
関連論文リスト
- RadioFormer: A Multiple-Granularity Radio Map Estimation Transformer with 1\textpertenthousand Spatial Sampling [60.267226205350596]
電波マップ推定は、電磁スペクトル量の密度の高い表現を生成することを目的としている。
空間スパース観測によって生じる制約に対処する新しい多重粒度変換器であるRadioFormerを提案する。
また,RadioFormerは,最小計算コストを維持しつつ,無線マップ推定における最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2025-04-27T08:44:41Z) - RadioDiff-Inverse: Diffusion Enhanced Bayesian Inverse Estimation for ISAC Radio Map Construction [24.3983954491267]
無線地図(RM)は、環境に配慮した通信やセンシングに不可欠であり、位置固有の無線チャネル情報を提供する。
既存のRM構築法は、しばしば正確な環境データと基地局(BS)の場所に依存しており、動的またはプライバシーに敏感な環境では必ずしも利用できない。
本稿では、粗い環境知識とノイズスパース測定の下でのベイズ逆問題としてRM構築を定式化する。
拡散強化ベイズ逆推定フレームワークであるRadioDiff-Inverseを提案する。
論文 参考訳(メタデータ) (2025-04-19T13:49:59Z) - Robust Representation Consistency Model via Contrastive Denoising [83.47584074390842]
ランダムな平滑化は、敵の摂動に対する堅牢性を証明する理論的保証を提供する。
拡散モデルは、ノイズ摂動サンプルを浄化するためにランダムな平滑化に成功している。
我々は,画素空間における拡散軌跡に沿った生成的モデリングタスクを,潜在空間における識別的タスクとして再構成する。
論文 参考訳(メタデータ) (2025-01-22T18:52:06Z) - Residual Channel Boosts Contrastive Learning for Radio Frequency Fingerprint Identification [17.98760668117099]
本稿では、RFFI(Radio Frequency Fingerprint Identification)のための残留チャネルに基づくデータ拡張戦略を提案する。
提案手法は,より少ないサンプルと少ない時間で,特徴抽出能力と一般化能力の両方を著しく向上させることを示す。
論文 参考訳(メタデータ) (2024-12-12T02:48:20Z) - NeuRBF: A Neural Fields Representation with Adaptive Radial Basis
Functions [93.02515761070201]
本稿では,信号表現に一般放射状基底を用いる新しいタイプのニューラルネットワークを提案する。
提案手法は, 空間適応性が高く, ターゲット信号により密着可能な, フレキシブルなカーネル位置と形状を持つ一般ラジアルベース上に構築する。
ニューラルラジアンス場再構成に適用した場合,本手法はモデルサイズが小さく,訓練速度が同等である最先端のレンダリング品質を実現する。
論文 参考訳(メタデータ) (2023-09-27T06:32:05Z) - Radio Generation Using Generative Adversarial Networks with An Unrolled
Design [18.049453261384013]
無線生成のための新しいGANフレームワーク「Radio GAN」を開発した。
1つ目は、電波信号のサンプリング分布をモデル化することを目的としたサンプリングポイントに基づく学習である。
2つ目は、未学習のジェネレータ設計であり、予測された純粋な信号分布を前者として組み合わせることで、学習の難易度を大幅に低減することができる。
論文 参考訳(メタデータ) (2023-06-24T07:47:22Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
本稿では,まず,不整合表現学習(DRL)の枠組みを提案し,入力信号を逆学習によりデバイス関連成分とデバイス関連成分に分解する。
提案フレームワークにおける暗黙的なデータ拡張は、デバイス非関連チャネル統計の過度な適合を避けるために、RFF抽出器に正規化を課す。
実験により、DR-RFFと呼ばれる提案手法は、未知の複雑な伝播環境に対する一般化可能性の観点から従来の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-08-04T15:46:48Z) - FedRec: Federated Learning of Universal Receivers over Fading Channels [92.15358738530037]
本稿では,ダウンリンクフェージングチャネルに対するニューラルネットワークを用いたシンボル検出手法を提案する。
複数のユーザが協力して、普遍的なデータ駆動型検出器を学習する。
得られた受信機の性能は、フェーディング統計の知識を必要とせずに、様々なチャネル条件下でMAP性能に近づくことを示す。
論文 参考訳(メタデータ) (2020-11-14T11:29:55Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
フェデレートラーニング(Federated Learning)は、無線デバイスとのコラボレーションによって、中央サーバでグローバルモデルをトレーニングするための、プライバシ保護のアプローチである。
本稿では,大規模マルチインプット多出力通信システム上でのフェデレーション学習のための圧縮センシング手法を提案する。
論文 参考訳(メタデータ) (2020-03-18T05:56:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。