論文の概要: From Abstract to Actionable: Pairwise Shapley Values for Explainable AI
- arxiv url: http://arxiv.org/abs/2502.12525v1
- Date: Tue, 18 Feb 2025 04:20:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:07:59.112735
- Title: From Abstract to Actionable: Pairwise Shapley Values for Explainable AI
- Title(参考訳): 抽象から行動可能へ:説明可能なAIのためのペアワイズな共有価値
- Authors: Jiaxin Xu, Hung Chau, Angela Burden,
- Abstract要約: 提案するPairwise Shapley Valuesは,特徴属性を明示的,人間関連性のある比較に基礎を置く新しいフレームワークである。
本手法では,一値命令と組み合わせたペアワイズ参照選択を導入し,直観的,モデルに依存しない説明を行う。
Pairwise Shapley Valuesは多種多様な回帰・分類シナリオにおける解釈可能性を高めることを実証する。
- 参考スコア(独自算出の注目度): 0.8192907805418583
- License:
- Abstract: Explainable AI (XAI) is critical for ensuring transparency, accountability, and trust in machine learning systems as black-box models are increasingly deployed within high-stakes domains. Among XAI methods, Shapley values are widely used for their fairness and consistency axioms. However, prevalent Shapley value approximation methods commonly rely on abstract baselines or computationally intensive calculations, which can limit their interpretability and scalability. To address such challenges, we propose Pairwise Shapley Values, a novel framework that grounds feature attributions in explicit, human-relatable comparisons between pairs of data instances proximal in feature space. Our method introduces pairwise reference selection combined with single-value imputation to deliver intuitive, model-agnostic explanations while significantly reducing computational overhead. Here, we demonstrate that Pairwise Shapley Values enhance interpretability across diverse regression and classification scenarios--including real estate pricing, polymer property prediction, and drug discovery datasets. We conclude that the proposed methods enable more transparent AI systems and advance the real-world applicability of XAI.
- Abstract(参考訳): 説明可能なAI(XAI)は、ブラックボックスモデルがハイテイクドメインにますますデプロイされるにつれて、透明性、説明責任、マシンラーニングシステムの信頼を保証するために不可欠である。
XAI法では、Shapley値はその公平性と一貫性の公理に広く使用されている。
しかし、一般的なShapley値近似法は、一般に抽象的なベースラインや計算集約的な計算に依存しており、解釈可能性やスケーラビリティを制限できる。
このような課題に対処するため,Pairwise Shapley Valuesを提案する。Pairwise Shapley Valuesは,特徴空間に近似したデータインスタンスのペア間の明示的かつ人間関係的な比較に特徴属性を基礎とする,新しいフレームワークである。
そこで本手法では,一値計算と組み合わせたペアワイズ参照選択を導入し,直観的かつモデルに依存しない説明を実現するとともに,計算オーバーヘッドを大幅に削減する。
ここでは、Pairwise Shapley Valuesは、不動産価格、ポリマー特性予測、薬物発見データセットを含む、さまざまな回帰および分類シナリオにおける解釈可能性を高めることを実証する。
提案手法により,より透過的なAIシステムを実現し,XAIの現実的な適用性を向上させることができる。
関連論文リスト
- SynthTree: Co-supervised Local Model Synthesis for Explainable Prediction [15.832975722301011]
本稿では,最小限の精度で説明可能性を向上させる手法を提案する。
我々は,AI技術を利用してノードを推定する新しい手法を開発した。
我々の研究は、統計的方法論が説明可能なAIを前進させる上で重要な役割を担っている。
論文 参考訳(メタデータ) (2024-06-16T14:43:01Z) - LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
本稿では,自己注意ネットワークのためのパラメータ効率の高いディープアンサンブル手法であるLoRA-Ensembleを紹介する。
全メンバー間で重みを共有できる1つの事前学習型自己注意ネットワークを利用することで、注意投影のために、メンバー固有の低ランク行列を訓練する。
提案手法は明示的なアンサンブルよりも優れたキャリブレーションを示し,様々な予測タスクやデータセットに対して類似あるいは良好な精度を実現する。
論文 参考訳(メタデータ) (2024-05-23T11:10:32Z) - Variational Shapley Network: A Probabilistic Approach to Self-Explaining
Shapley values with Uncertainty Quantification [2.6699011287124366]
シェープ価値は、モデル決定プロセスの解明のための機械学習(ML)の基礎ツールとして現れている。
本稿では,Shapley値の計算を大幅に単純化し,単一のフォワードパスしか必要としない,新しい自己説明手法を提案する。
論文 参考訳(メタデータ) (2024-02-06T18:09:05Z) - Fast Shapley Value Estimation: A Unified Approach [71.92014859992263]
冗長な手法を排除し、単純で効率的なシェープリー推定器SimSHAPを提案する。
既存手法の解析において、推定器は特徴部分集合からランダムに要約された値の線形変換として統一可能であることを観察する。
実験により,SimSHAPの有効性が検証され,精度の高いShapley値の計算が大幅に高速化された。
論文 参考訳(メタデータ) (2023-11-02T06:09:24Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Interpretable pipelines with evolutionarily optimized modules for RL
tasks with visual inputs [5.254093731341154]
進化的アルゴリズムを用いて協調最適化された複数の解釈可能なモデルからなるエンドツーエンドパイプラインを提案する。
Atariベンチマークの強化学習環境において,本手法を検証した。
論文 参考訳(メタデータ) (2022-02-10T10:33:44Z) - Collective eXplainable AI: Explaining Cooperative Strategies and Agent
Contribution in Multiagent Reinforcement Learning with Shapley Values [68.8204255655161]
本研究は,シェープリー値を用いたマルチエージェントRLにおける協調戦略を説明するための新しい手法を提案する。
結果は、差別的でない意思決定、倫理的かつ責任あるAI由来の意思決定、公正な制約の下での政策決定に影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2021-10-04T10:28:57Z) - Rational Shapley Values [0.0]
ポストホックな説明可能な人工知能(XAI)の一般的なツールは、文脈に敏感であるか、要約が難しい。
非互換なアプローチを合成し拡張する新しいXAI手法である、エミュレーション型シェープリー値を導入する。
私は、意思決定理論や因果モデリングのツールを活用して、XAIにおける多くの既知の課題を解決する実用的なアプローチを定式化し、実装します。
論文 参考訳(メタデータ) (2021-06-18T15:45:21Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。