Origin-Destination Pattern Effects on Large-Scale Mixed Traffic Control via Multi-Agent Reinforcement Learning
- URL: http://arxiv.org/abs/2505.13543v2
- Date: Tue, 08 Jul 2025 09:21:47 GMT
- Title: Origin-Destination Pattern Effects on Large-Scale Mixed Traffic Control via Multi-Agent Reinforcement Learning
- Authors: Muyang Fan, Songyang Liu, Shuai Li, Weizi Li,
- Abstract summary: Large-scale mixed traffic control, involving both human-driven and robotic vehicles, remains underexplored.<n>We propose a decentralized multi-agent reinforcement learning framework for managing large-scale mixed traffic networks.<n>We evaluate our approach on a real-world network of 14 intersections in Colorado Springs, Colorado, USA.
- Score: 7.813738581616868
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traffic congestion remains a major challenge for modern urban transportation, diminishing both efficiency and quality of life. While autonomous driving technologies and reinforcement learning (RL) have shown promise for improving traffic control, most prior work has focused on small-scale networks or isolated intersections. Large-scale mixed traffic control, involving both human-driven and robotic vehicles, remains underexplored. In this study, we propose a decentralized multi-agent reinforcement learning framework for managing large-scale mixed traffic networks, where intersections are controlled either by traditional traffic signals or by robotic vehicles. We evaluate our approach on a real-world network of 14 intersections in Colorado Springs, Colorado, USA, using average vehicle waiting time as the primary measure of traffic efficiency. We are exploring a problem that has not been sufficiently addressed: Is large-scale Multi-Agent Traffic Control (MTC) still feasible when facing time-varying Origin-Destination (OD) patterns?
Related papers
- Large-Scale Mixed-Traffic and Intersection Control using Multi-agent Reinforcement Learning [9.05328054083722]
This study presents the first attempt to use decentralized multi-agent reinforcement learning for large-scale mixed traffic control.<n>We evaluate a real-world network in Colorado Springs, CO, USA with 14 intersections.<n>At 80% RV penetration rate, our method reduces waiting time from 6.17 s to 5.09 s and increases throughput from 454 vehicles per 500 seconds to 493 vehicles per 500 seconds.
arXiv Detail & Related papers (2025-04-07T02:52:39Z) - Neighbor-Aware Reinforcement Learning for Mixed Traffic Optimization in Large-scale Networks [1.9413548770753521]
This paper proposes a reinforcement learning framework for coordinating mixed traffic across interconnected intersections.<n>Our key contribution is a neighbor-aware reward mechanism that enables RVs to maintain balanced distribution across the network.<n>Results show that our method reduces average waiting times by 39.2% compared to the state-of-the-art single-intersection control policy.
arXiv Detail & Related papers (2024-12-17T07:35:56Z) - Agent-Agnostic Centralized Training for Decentralized Multi-Agent Cooperative Driving [17.659812774579756]
We propose an asymmetric actor-critic model that learns decentralized cooperative driving policies for autonomous vehicles.
By employing attention neural networks with masking, our approach efficiently manages real-world traffic dynamics and partial observability.
arXiv Detail & Related papers (2024-03-18T16:13:02Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network.
Most prior TSC methods leverage deep reinforcement learning to search for a control policy.
We propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness.
arXiv Detail & Related papers (2023-06-13T05:58:57Z) - A Novel Multi-Agent Deep RL Approach for Traffic Signal Control [13.927155702352131]
We propose a Friend-Deep Q-network (Friend-DQN) approach for multiple traffic signal control in urban networks.
In particular, the cooperation between multiple agents can reduce the state-action space and thus speed up the convergence.
arXiv Detail & Related papers (2023-06-05T08:20:37Z) - Learning to Control and Coordinate Mixed Traffic Through Robot Vehicles at Complex and Unsignalized Intersections [33.0086333735748]
We propose a multi-agent reinforcement learning approach for the control and coordination of mixed traffic by RVs at real-world, complex intersections.
Our method can prevent congestion formation via merely 5% RVs under a real-world traffic demand of 700 vehicles per hour.
Our method is robust against blackout events, sudden RV percentage drops, and V2V communication error.
arXiv Detail & Related papers (2023-01-12T21:09:58Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Courteous Behavior of Automated Vehicles at Unsignalized Intersections
via Reinforcement Learning [30.00761722505295]
We propose a novel approach to optimize traffic flow at intersections in mixed traffic situations using deep reinforcement learning.
Our reinforcement learning agent learns a policy for a centralized controller to let connected autonomous vehicles at unsignalized intersections give up their right of way and yield to other vehicles to optimize traffic flow.
arXiv Detail & Related papers (2021-06-11T13:16:48Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.