論文の概要: Autonomous nanoparticle synthesis by design
- arxiv url: http://arxiv.org/abs/2505.13571v1
- Date: Mon, 19 May 2025 13:19:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:52.450288
- Title: Autonomous nanoparticle synthesis by design
- Title(参考訳): 設計によるナノ粒子の自動合成
- Authors: Andy S. Anker, Jonas H. Jensen, Miguel Gonzalez-Duque, Rodrigo Moreno, Aleksandra Smolska, Mikkel Juelsholt, Vincent Hardion, Mads R. V. Jorgensen, Andres Faina, Jonathan Quinson, Kasper Stoy, Tejs Vegge,
- Abstract要約: 本稿では,原子スケール構造を特異的に合成する自律的手法を提案する。
提案手法は,実時間実験全散乱(TS)とペア分布関数(PDF)データとをマッチングして合成プロトコルを自動設計する。
我々はこの能力をシンクロトロンで実証し、2つの構造的に異なる金NPの合成に成功した。
- 参考スコア(独自算出の注目度): 32.63291717930695
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Controlled synthesis of materials with specified atomic structures underpins technological advances yet remains reliant on iterative, trial-and-error approaches. Nanoparticles (NPs), whose atomic arrangement dictates their emergent properties, are particularly challenging to synthesise due to numerous tunable parameters. Here, we introduce an autonomous approach explicitly targeting synthesis of atomic-scale structures. Our method autonomously designs synthesis protocols by matching real time experimental total scattering (TS) and pair distribution function (PDF) data to simulated target patterns, without requiring prior synthesis knowledge. We demonstrate this capability at a synchrotron, successfully synthesising two structurally distinct gold NPs: 5 nm decahedral and 10 nm face-centred cubic structures. Ultimately, specifying a simulated target scattering pattern, thus representing a bespoke atomic structure, and obtaining both the synthesised material and its reproducible synthesis protocol on demand may revolutionise materials design. Thus, ScatterLab provides a generalisable blueprint for autonomous, atomic structure-targeted synthesis across diverse systems and applications.
- Abstract(参考訳): 特定の原子構造を持つ物質の制御された合成は、技術的進歩を支えるが、反復的かつ試行錯誤的なアプローチに依存している。
原子配列が創発的な性質を規定するナノ粒子(NP)は、多くの調整可能なパラメータのため、特に合成が困難である。
本稿では,原子スケール構造を特異的に合成する自律的手法を提案する。
本手法は, 実時間実験全散乱(TS)とペア分布関数(PDF)データを, 事前合成知識を必要とせずに, 合成プロトコルを自動設計する。
我々は、この能力をシンクロトロンで示し、構造的に異なる2つの金のNP: 5nmデカヘドラルと10nm顔中心立方体構造をうまく合成した。
究極的には、模擬対象散乱パターンを指定し、したがって、好ましくない原子構造を表現し、必要に応じて合成材料と再現可能な合成プロトコルの両方を取得することは、材料設計に革命をもたらす可能性がある。
したがって、ScatterLabは、様々なシステムやアプリケーションにまたがる自律的で原子構造をターゲットとした合成のための一般的な青写真を提供する。
関連論文リスト
- DPLM-2: A Multimodal Diffusion Protein Language Model [75.98083311705182]
DPLM-2は, 離散拡散タンパク質言語モデル(DPLM)を拡張し, 配列と構造の両方に適合する多モーダルタンパク質基盤モデルである。
DPLM-2は、配列と構造、およびその限界と条件の結合分布を学習する。
実験によりDPLM-2は高度に互換性のあるアミノ酸配列とそれに対応する3D構造を同時に生成できることが示された。
論文 参考訳(メタデータ) (2024-10-17T17:20:24Z) - Procedural Synthesis of Synthesizable Molecules [22.905205379063148]
合成可能な分子の設計と、合成不可能な分子へのアナログの推奨は、分子発見を加速させる重要な問題である。
プログラム合成のアイデアを用いて,両問題を再認識する。
合成経路の空間を推論するための二段階のフレームワークを作成する。
論文 参考訳(メタデータ) (2024-08-24T04:32:36Z) - Bespoke Nanoparticle Synthesis and Chemical Knowledge Discovery Via
Autonomous Experimentations [6.544041907979552]
本稿では,光学特性を目標としたナノ粒子(NP)の設計のための自律的な実験プラットフォームについて報告する。
このプラットフォームは、AI最適化モデリングのフィードバックに基づいて、NPのバッチ合成モジュールとUV-Vis分光モジュールの間をクローズループで動作させる。
優れた材料開発効率に加えて、合成変数の解析により、Ag NP合成におけるクエン酸の効果を含む新しい化学が明らかにされる。
論文 参考訳(メタデータ) (2023-09-01T09:15:04Z) - Extracting Structured Seed-Mediated Gold Nanorod Growth Procedures from
Literature with GPT-3 [52.59930033705221]
1,137枚の紙から抽出した11,644個のエンティティのデータセットを作成した。
1,137枚の紙から抽出した11,644個のエンティティのデータセットを作成した。
論文 参考訳(メタデータ) (2023-04-26T22:21:33Z) - Machine-Learning-Optimized Perovskite Nanoplatelet Synthesis [55.41644538483948]
総合成量200のCsPbBr3ナノプレート(NPL)の品質向上のためのアルゴリズムを開発した。
このアルゴリズムは、前駆率に基づいて、NPL分散のPL放出最大値を予測することができる。
論文 参考訳(メタデータ) (2022-10-18T11:54:11Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
タンパク質-リガンド複合体構造を直接予測できる計算手法であるNeuralPLexerを提案する。
我々の研究は、データ駆動型アプローチがタンパク質と小分子の構造的協調性を捉え、酵素や薬物分子などの設計を加速させる可能性を示唆している。
論文 参考訳(メタデータ) (2022-09-30T01:46:38Z) - ULSA: Unified Language of Synthesis Actions for Representation of
Synthesis Protocols [2.436060325115753]
合成手順を記述するための最初の統一言語であるULSA(Unified Language of Synthesis Actions)を提案する。
提案手法に基づく3,040の合成手順のデータセットを作成した。
論文 参考訳(メタデータ) (2022-01-23T17:44:48Z) - Amortized Tree Generation for Bottom-up Synthesis Planning and
Synthesizable Molecular Design [2.17167311150369]
ターゲット分子の埋め込みを条件としたマルコフ決定過程として,合成経路を生成するための償却アプローチを報告した。
提案手法により,最適化された条件付き符号からデコードすることで,ボトムアップ方式で合成計画を実行し,合成可能な分子を設計することができる。
論文 参考訳(メタデータ) (2021-10-12T22:43:25Z) - RetroXpert: Decompose Retrosynthesis Prediction like a Chemist [60.463900712314754]
そこで我々は, テンプレートフリーな自動逆合成拡張アルゴリズムを考案した。
我々の方法はレトロシンセシスを2段階に分解する。
最先端のベースラインよりも優れている一方で、我々のモデルは化学的に合理的な解釈も提供する。
論文 参考訳(メタデータ) (2020-11-04T04:35:34Z) - Predictive Synthesis of Quantum Materials by Probabilistic Reinforcement
Learning [1.4680035572775534]
本研究では, 半超電導単層MoS$_2$の量子材料に対する最適合成スケジュールの予測に強化学習を用いる。
このモデルは、多相ヘテロ構造を含む複雑な構造の合成のためのプロファイルを予測するために拡張することができる。
論文 参考訳(メタデータ) (2020-09-14T20:50:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。