Comparing Apples to Oranges: A Taxonomy for Navigating the Global Landscape of AI Regulation
- URL: http://arxiv.org/abs/2505.13673v1
- Date: Mon, 19 May 2025 19:23:41 GMT
- Title: Comparing Apples to Oranges: A Taxonomy for Navigating the Global Landscape of AI Regulation
- Authors: Sacha Alanoca, Shira Gur-Arieh, Tom Zick, Kevin Klyman,
- Abstract summary: We present a taxonomy to map the global landscape of AI regulation.<n>We apply this framework to five early movers: the European Union's AI Act, the United States' Executive Order 14110, Canada's AI and Data Act, China's Interim Measures for Generative AI Services, and Brazil's AI Bill 2338/2023.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: AI governance has transitioned from soft law-such as national AI strategies and voluntary guidelines-to binding regulation at an unprecedented pace. This evolution has produced a complex legislative landscape: blurred definitions of "AI regulation" mislead the public and create a false sense of safety; divergent regulatory frameworks risk fragmenting international cooperation; and uneven access to key information heightens the danger of regulatory capture. Clarifying the scope and substance of AI regulation is vital to uphold democratic rights and align international AI efforts. We present a taxonomy to map the global landscape of AI regulation. Our framework targets essential metrics-technology or application-focused rules, horizontal or sectoral regulatory coverage, ex ante or ex post interventions, maturity of the digital legal landscape, enforcement mechanisms, and level of stakeholder participation-to classify the breadth and depth of AI regulation. We apply this framework to five early movers: the European Union's AI Act, the United States' Executive Order 14110, Canada's AI and Data Act, China's Interim Measures for Generative AI Services, and Brazil's AI Bill 2338/2023. We further offer an interactive visualization that distills these dense legal texts into accessible insights, highlighting both commonalities and differences. By delineating what qualifies as AI regulation and clarifying each jurisdiction's approach, our taxonomy reduces legal uncertainty, supports evidence-based policymaking, and lays the groundwork for more inclusive, globally coordinated AI governance.
Related papers
- Mapping the Regulatory Learning Space for the EU AI Act [0.8987776881291145]
The EU's AI Act represents the world first transnational AI regulation with concrete enforcement measures.<n>It builds upon existing EU mechanisms for product health and safety regulation, but extends it to protect fundamental rights.<n>These extensions introduce uncertainties in terms of how the technical state of the art will be applied to AI system certification and enforcement actions.<n>We argue that these uncertainties, coupled with the fast changing nature of AI and the relative immaturity of the state of the art in fundamental rights risk management require the implementation of the AI Act to place a strong emphasis on comprehensive and rapid regulatory learning.
arXiv Detail & Related papers (2025-02-27T12:46:30Z) - The Fundamental Rights Impact Assessment (FRIA) in the AI Act: Roots, legal obligations and key elements for a model template [55.2480439325792]
Article aims to fill existing gaps in the theoretical and methodological elaboration of the Fundamental Rights Impact Assessment (FRIA)<n>This article outlines the main building blocks of a model template for the FRIA.<n>It can serve as a blueprint for other national and international regulatory initiatives to ensure that AI is fully consistent with human rights.
arXiv Detail & Related papers (2024-11-07T11:55:55Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - The Artificial Intelligence Act: critical overview [0.0]
This article provides a critical overview of the recently approved Artificial Intelligence Act.
It starts by presenting the main structure, objectives, and approach of Regulation (EU) 2024/1689.
The text concludes that even if the overall framework can be deemed adequate and balanced, the approach is so complex that it risks defeating its own purpose.
arXiv Detail & Related papers (2024-08-30T21:38:02Z) - Securing the Future of GenAI: Policy and Technology [50.586585729683776]
Governments globally are grappling with the challenge of regulating GenAI, balancing innovation against safety.
A workshop co-organized by Google, University of Wisconsin, Madison, and Stanford University aimed to bridge this gap between GenAI policy and technology.
This paper summarizes the discussions during the workshop which addressed questions, such as: How regulation can be designed without hindering technological progress?
arXiv Detail & Related papers (2024-05-21T20:30:01Z) - Report of the 1st Workshop on Generative AI and Law [78.62063815165968]
This report presents the takeaways of the inaugural Workshop on Generative AI and Law (GenLaw)
A cross-disciplinary group of practitioners and scholars from computer science and law convened to discuss the technical, doctrinal, and policy challenges presented by law for Generative AI.
arXiv Detail & Related papers (2023-11-11T04:13:37Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
The development and regulation of AI seems to have reached a critical stage.
Some experts are calling for a moratorium on the training of AI systems more powerful than GPT-4.
This paper analyses the most advanced legal proposal, the European Union's AI Act.
arXiv Detail & Related papers (2023-11-03T12:51:37Z) - AI Regulation in Europe: From the AI Act to Future Regulatory Challenges [3.0821115746307663]
It argues for a hybrid regulatory strategy that combines elements from both philosophies.
The paper examines the AI Act as a pioneering legislative effort to address the multifaceted challenges posed by AI.
It advocates for immediate action to create protocols for regulated access to high-performance, potentially open-source AI systems.
arXiv Detail & Related papers (2023-10-06T07:52:56Z) - Bridging the Global Divide in AI Regulation: A Proposal for a Contextual, Coherent, and Commensurable Framework [0.9622882291833615]
This paper proposes an alternative contextual, coherent, and commensurable (3C) framework for regulating artificial intelligence (AI)
To ensure contextuality, the framework bifurcates the AI life cycle into two phases: learning and deployment for specific tasks, instead of defining foundation or general-purpose models.
To ensure commensurability, the framework promotes the adoption of international standards for measuring and mitigating risks.
arXiv Detail & Related papers (2023-03-20T15:23:40Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Regulating Artificial Intelligence: Proposal for a Global Solution [6.037312672659089]
We argue that AI-related challenges cannot be tackled effectively without sincere international coordination.
We propose the establishment of an international AI governance framework organized around a new AI regulatory agency.
arXiv Detail & Related papers (2020-05-22T09:24:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.