論文の概要: Synthetic Non-stationary Data Streams for Recognition of the Unknown
- arxiv url: http://arxiv.org/abs/2505.13745v1
- Date: Mon, 19 May 2025 21:44:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:52.548639
- Title: Synthetic Non-stationary Data Streams for Recognition of the Unknown
- Title(参考訳): 未知の認識のための合成非定常データストリーム
- Authors: Joanna Komorniczak,
- Abstract要約: 本稿では,概念の漂流と新たなクラスの発生が生じる合成データストリーム生成の戦略について述べる。
これは、教師なしドリフト検出器が、新規性や概念ドリフトを検出するタスクにどのように対処しているかを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The problem of data non-stationarity is commonly addressed in data stream processing. In a dynamic environment, methods should continuously be ready to analyze time-varying data -- hence, they should enable incremental training and respond to concept drifts. An equally important variability typical for non-stationary data stream environments is the emergence of new, previously unknown classes. Often, methods focus on one of these two phenomena -- detection of concept drifts or detection of novel classes -- while both difficulties can be observed in data streams. Additionally, concerning previously unknown observations, the topic of open set of classes has become particularly important in recent years, where the goal of methods is to efficiently classify within known classes and recognize objects outside the model competence. This article presents a strategy for synthetic data stream generation in which both concept drifts and the emergence of new classes representing unknown objects occur. The presented research shows how unsupervised drift detectors address the task of detecting novelty and concept drifts and demonstrates how the generated data streams can be utilized in the open set recognition task.
- Abstract(参考訳): 非定常性の問題は通常、データストリーム処理で対処される。
動的環境では、メソッドは継続的に時間変化のあるデータを分析する準備ができているべきです。
非定常データストリーム環境に典型的な同種の重要な変数は、新しい、以前は未知のクラスが出現することである。
多くの場合、この2つの現象の1つ(概念のドリフトの検出や新しいクラスの検出)に焦点を当てる。
さらに、これまで未知の観察に関して、オープンなクラスの話題は近年特に重要になってきており、そこでは、メソッドの目標は、既知のクラス内で効率的に分類し、モデル能力の外側のオブジェクトを認識することである。
本稿では、概念の漂流と未知のオブジェクトを表す新しいクラスの発生を両立させる合成データストリーム生成戦略を提案する。
本研究は,非教師付きドリフト検出器が新規性や概念ドリフトを検出するタスクにどう対処するかを示し,オープンセット認識タスクにおいて生成したデータストリームをどのように活用できるかを示す。
関連論文リスト
- A Dataset for Semantic Segmentation in the Presence of Unknowns [49.795683850385956]
既存のデータセットは、既知のものや未知のもののみの評価を可能にするが、両方ではない。
乱雑な実環境からの多様な異常な入力を特徴とする,新しい異常セグメンテーションデータセットISSUを提案する。
データセットは、既存の異常セグメンテーションデータセットの2倍大きい。
論文 参考訳(メタデータ) (2025-03-28T10:31:01Z) - Decoupling the Class Label and the Target Concept in Machine Unlearning [81.69857244976123]
機械学習の目的は、トレーニングデータの一部を除外した再トレーニングされたモデルを近似するために、トレーニングされたモデルを調整することだ。
過去の研究では、クラスワイド・アンラーニングが対象クラスの知識を忘れることに成功していることが示された。
我々は、TARget-aware Forgetting (TARF) という一般的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-12T14:53:30Z) - Activate and Reject: Towards Safe Domain Generalization under Category
Shift [71.95548187205736]
カテゴリーシフト(DGCS)下における領域一般化の実践的問題について検討する。
未知のクラスサンプルを同時に検出し、ターゲットドメイン内の既知のクラスサンプルを分類することを目的としている。
従来のDGと比較すると,1)ソースクラスのみを用いたトレーニングにおいて,未知の概念を学習する方法,2)ソーストレーニングされたモデルを未知の環境に適応する方法,の2つの新しい課題に直面している。
論文 参考訳(メタデータ) (2023-10-07T07:53:12Z) - Learning from Data Streams: An Overview and Update [1.5076964620370268]
教師付きデータストリーム学習の基本的定義と設定を再構築する。
教師付きデータストリーム学習タスクを構成するものについて、新たに検討する。
データストリームから学ぶことは、シングルパスやオンライン学習のアプローチを強制しない、という点が主な重点です。
論文 参考訳(メタデータ) (2022-12-30T14:01:41Z) - Open World DETR: Transformer based Open World Object Detection [60.64535309016623]
そこで我々は,Deformable DETRに基づくオープンワールドオブジェクト検出のための2段階学習手法Open World DETRを提案する。
モデルのクラス固有のコンポーネントを多視点の自己ラベル戦略と一貫性制約で微調整する。
提案手法は、他の最先端のオープンワールドオブジェクト検出方法よりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2022-12-06T13:39:30Z) - Static-Dynamic Co-Teaching for Class-Incremental 3D Object Detection [71.18882803642526]
ディープラーニングアプローチは、3Dオブジェクト検出タスクにおいて顕著なパフォーマンスを示している。
古いデータを再考することなく、新しいクラスを漸進的に学習するときに、破滅的なパフォーマンス低下に悩まされる。
この「破滅的な忘れ物」現象は、現実世界のシナリオにおける3Dオブジェクト検出アプローチの展開を妨げる。
SDCoTは,新しい静的なコティーチング手法である。
論文 参考訳(メタデータ) (2021-12-14T09:03:41Z) - Anomaly-Aware Semantic Segmentation by Leveraging Synthetic-Unknown Data [19.80173687261055]
自律運転のような安全クリティカルな応用には異常認識が不可欠である。
本稿では,異常認識型セマンティックセマンティック・セマンティック・タスクに対処する新しい合成未知データ生成手法を提案する。
2つの異常セグメンテーションデータセットの最先端性能に到達する。
論文 参考訳(メタデータ) (2021-11-29T06:24:50Z) - Bridging Non Co-occurrence with Unlabeled In-the-wild Data for
Incremental Object Detection [56.22467011292147]
物体検出における破滅的忘れを緩和するために,いくつかの漸進的学習法が提案されている。
有効性にもかかわらず、これらの手法は新規クラスのトレーニングデータにラベルのないベースクラスの共起を必要とする。
そこで本研究では,新たな授業の訓練において,欠落した基本クラスが原因で生じる非発生を補うために,未ラベルのインザ・ザ・ワイルドデータを使用することを提案する。
論文 参考訳(メタデータ) (2021-10-28T10:57:25Z) - Detecting Concept Drift With Neural Network Model Uncertainty [0.0]
不確実ドリフト検出(UDD)は、真のラベルにアクセスすることなくドリフトを検出することができる。
入力データに基づくドリフト検出とは対照的に,現在の入力データが予測モデルの特性に与える影響を考察する。
UDDは2つの合成および10の実世界のデータセットにおいて、回帰処理と分類処理の両方において、他の最先端戦略よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-07-05T08:56:36Z) - Continual Prototype Evolution: Learning Online from Non-Stationary Data
Streams [42.525141660788]
任意の時点で学習と予測を可能にするシステムを導入する。
継続的な学習における主要な仕事とは対照的に、データストリームはオンライン形式で処理される。
我々は,高度にバランスの取れない3つのデータストリームを含む8つのベンチマークで,最先端のパフォーマンスを顕著に比較した。
論文 参考訳(メタデータ) (2020-09-02T09:39:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。