論文の概要: Rethink the Role of Deep Learning towards Large-scale Quantum Systems
- arxiv url: http://arxiv.org/abs/2505.13852v1
- Date: Tue, 20 May 2025 02:55:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:52.639761
- Title: Rethink the Role of Deep Learning towards Large-scale Quantum Systems
- Title(参考訳): 大規模量子システムにおけるディープラーニングの役割の再考
- Authors: Yusheng Zhao, Chi Zhang, Yuxuan Du,
- Abstract要約: ハミルトンの3つのファミリーにわたる従来の機械学習アプローチに対して、ディープラーニングモデルをベンチマークする。
結果から,MLモデルは全てのタスクにおいてDLアプローチに匹敵する,あるいはそれ以上のパフォーマンスが得られることが判明した。
これらの知見は、多くの量子システム学習シナリオにおいて、現在のDLモデルの必要性に挑戦する。
- 参考スコア(独自算出の注目度): 8.756632986784862
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Characterizing the ground state properties of quantum systems is fundamental to capturing their behavior but computationally challenging. Recent advances in AI have introduced novel approaches, with diverse machine learning (ML) and deep learning (DL) models proposed for this purpose. However, the necessity and specific role of DL models in these tasks remain unclear, as prior studies often employ varied or impractical quantum resources to construct datasets, resulting in unfair comparisons. To address this, we systematically benchmark DL models against traditional ML approaches across three families of Hamiltonian, scaling up to 127 qubits in three crucial ground-state learning tasks while enforcing equivalent quantum resource usage. Our results reveal that ML models often achieve performance comparable to or even exceeding that of DL approaches across all tasks. Furthermore, a randomization test demonstrates that measurement input features have minimal impact on DL models' prediction performance. These findings challenge the necessity of current DL models in many quantum system learning scenarios and provide valuable insights into their effective utilization.
- Abstract(参考訳): 量子系の基底状態特性を特徴づけることは、その振る舞いを捉えるのに基本的だが、計算的に難しい。
AIの最近の進歩は、多様な機械学習(ML)とディープラーニング(DL)モデルによって、新しいアプローチを導入している。
しかしながら、これらのタスクにおけるDLモデルの必要性と特定の役割は、以前の研究では、データセットを構築するために様々な、あるいは非現実的な量子資源を用いており、不公平な比較結果となるため、はっきりしないままである。
これを解決するために、ハミルトンの3つのファミリーにわたる従来のMLアプローチに対してDLモデルを体系的にベンチマークし、等価な量子リソースの使用を強制しながら、3つの重要な基底的学習タスクで最大127キュービットまでスケールアップした。
結果から,MLモデルは全てのタスクにおいてDLアプローチに匹敵する,あるいはそれ以上のパフォーマンスが得られることが判明した。
さらに、ランダム化試験により、測定入力特徴がDLモデルの予測性能に最小限の影響があることが示される。
これらの知見は、多くの量子システム学習シナリオにおいて、現在のDLモデルの必要性に挑戦し、それらの有効利用に関する貴重な洞察を提供する。
関連論文リスト
- A Comprehensive Study on Quantization Techniques for Large Language Models [0.0]
大規模言語モデル(LLM)は、学術と産業の両方で広く研究され、利用されている。
LLMは、リソースに制約のあるIoTデバイスや組み込みシステムにデプロイする上で、重大な課題を提示している。
量子化(Quantization)は、モデルの値の精度を小さな離散値のセットに縮める技術であり、有望な解決策を提供する。
論文 参考訳(メタデータ) (2024-10-30T04:55:26Z) - Learning Density Functionals from Noisy Quantum Data [0.0]
ノイズの多い中間スケール量子(NISQ)デバイスは、機械学習(ML)モデルのトレーニングデータを生成するために使用される。
NISQアルゴリズムの典型的なノイズを受ける小さなデータセットからニューラルネットワークMLモデルをうまく一般化できることを示す。
本研究は,NISQデバイスを実用量子シミュレーションに活用するための有望な経路であることを示唆する。
論文 参考訳(メタデータ) (2024-09-04T17:59:55Z) - Theoretical Insights into Overparameterized Models in Multi-Task and Replay-Based Continual Learning [36.92660589442233]
マルチタスク学習(MTL)は,複数のタスクを同時に学習することで,複数のタスクにおけるモデルの一般化性能を向上させることを目的としている。
連続学習(CL)は、以前取得した知識を忘れずに、時間とともに新しい逐次到着タスクに適応する。
MTL設定におけるモデルの性能に及ぼす各種システムパラメータの影響を理論的に記述する。
その結果,バッファサイズとモデルキャパシティがCLセットアップの記憶率に及ぼす影響を明らかにし,最先端のCL手法のいくつかに光を当てるのに役立つことがわかった。
論文 参考訳(メタデータ) (2024-08-29T23:22:40Z) - Advancing Multimodal Large Language Models with Quantization-Aware Scale Learning for Efficient Adaptation [70.22782550540714]
QSLAWと呼ばれるマルチモーダルワームアップに基づく量子化対応スケールルアーニング法
本稿では、QSLAWと呼ばれるマルチモーダルワームアップに基づく量子化対応スケールLeArning手法を提案する。
論文 参考訳(メタデータ) (2024-08-07T12:42:09Z) - Machine Learning vs Deep Learning: The Generalization Problem [0.0]
本研究では,従来の機械学習(ML)モデルとディープラーニング(DL)アルゴリズムの比較能力について,外挿の観点から検討した。
本稿では,MLモデルとDLモデルの両方が指数関数で学習され,学習領域外の値でテストされる経験的分析を提案する。
その結果,ディープラーニングモデルには,学習範囲を超えて一般化する固有の能力があることが示唆された。
論文 参考訳(メタデータ) (2024-03-03T21:42:55Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Do Emergent Abilities Exist in Quantized Large Language Models: An
Empirical Study [90.34226812493083]
本研究の目的は,LLMを小言語モデルと区別する重要な特徴である現象能力に対する量子化の影響を検討することである。
実験により、これらの創発能力は4ビット量子化モデルに残っており、2ビットモデルは深刻な性能劣化に直面していることがわかった。
低ビットモデルの性能向上のために,(1) 部品(またはサブ構造)が量子化に敏感である場合の微視的影響解析,(2) モデル微視化による性能補償の2つの実験を行った。
論文 参考訳(メタデータ) (2023-07-16T15:11:01Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - Which priors matter? Benchmarking models for learning latent dynamics [70.88999063639146]
古典力学の先行概念を機械学習モデルに統合する手法が提案されている。
これらのモデルの現在の機能について、精査する。
連続的および時間的可逆的ダイナミクスの使用は、すべてのクラスのモデルに恩恵をもたらす。
論文 参考訳(メタデータ) (2021-11-09T23:48:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。