論文の概要: Quantum Diffusion Models for Few-Shot Learning
- arxiv url: http://arxiv.org/abs/2411.04217v1
- Date: Wed, 06 Nov 2024 19:25:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:39:56.935874
- Title: Quantum Diffusion Models for Few-Shot Learning
- Title(参考訳): ファウショット学習のための量子拡散モデル
- Authors: Ruhan Wang, Ye Wang, Jing Liu, Toshiaki Koike-Akino,
- Abstract要約: 本稿では,量子拡散モデル(QDM)を用いた3つの新しいフレームワークを提案する。
実験の結果,提案アルゴリズムは既存手法よりも有意に優れていた。
- 参考スコア(独自算出の注目度): 13.13788757618812
- License:
- Abstract: Modern quantum machine learning (QML) methods involve the variational optimization of parameterized quantum circuits on training datasets, followed by predictions on testing datasets. Most state-of-the-art QML algorithms currently lack practical advantages due to their limited learning capabilities, especially in few-shot learning tasks. In this work, we propose three new frameworks employing quantum diffusion model (QDM) as a solution for the few-shot learning: label-guided generation inference (LGGI); label-guided denoising inference (LGDI); and label-guided noise addition inference (LGNAI). Experimental results demonstrate that our proposed algorithms significantly outperform existing methods.
- Abstract(参考訳): 現代の量子機械学習(QML)手法は、トレーニングデータセット上でのパラメータ化された量子回路の変動最適化と、テストデータセットでの予測を含む。
現在最先端のQMLアルゴリズムの多くは、特に数ショットの学習タスクにおいて、限られた学習能力のため、実用的な利点を欠いている。
本研究では,ラベル誘導生成推論(LGGI),ラベル誘導分解推論(LGDI),ラベル誘導雑音付加推論(LGNAI)の3つの新しいフレームワークを提案する。
実験の結果,提案アルゴリズムは既存手法よりも有意に優れていた。
関連論文リスト
- Learning Density Functionals from Noisy Quantum Data [0.0]
ノイズの多い中間スケール量子(NISQ)デバイスは、機械学習(ML)モデルのトレーニングデータを生成するために使用される。
NISQアルゴリズムの典型的なノイズを受ける小さなデータセットからニューラルネットワークMLモデルをうまく一般化できることを示す。
本研究は,NISQデバイスを実用量子シミュレーションに活用するための有望な経路であることを示唆する。
論文 参考訳(メタデータ) (2024-09-04T17:59:55Z) - Benchmarking Quantum Generative Learning: A Study on Scalability and Noise Resilience using QUARK [0.3624329910445628]
本稿では,量子生成学習アプリケーションのスケーラビリティと耐雑音性について検討する。
厳密なベンチマーク手法を用いて、進捗を追跡し、QMLアルゴリズムのスケーリングにおける課題を特定する。
その結果,QGANはQCBMほど次元の呪いの影響を受けず,QCBMはノイズに耐性があることがわかった。
論文 参考訳(メタデータ) (2024-03-27T15:05:55Z) - Evolutionary-enhanced quantum supervised learning model [0.0]
本研究は,進化的アンサッツフリー教師あり学習モデルを提案する。
パラメタライズド回路とは対照的に、われわれのモデルはエリート的手法によって進化する可変位相を持つ回路を用いる。
我々のフレームワークは不毛の台地を避けることに成功し、結果としてモデルの精度が向上した。
論文 参考訳(メタデータ) (2023-11-14T11:08:47Z) - Flexible Error Mitigation of Quantum Processes with Data Augmentation
Empowered Neural Model [9.857921247636451]
誤り軽減のためのデータ拡張強化型ニューラルモデルを提案する。
我々のモデルは、特定のノイズタイプや測定設定に関する事前の知識を必要としない。
対象の量子プロセスのノイズ測定結果のみからノイズフリー統計を推定することができる。
論文 参考訳(メタデータ) (2023-11-03T05:52:14Z) - Do Emergent Abilities Exist in Quantized Large Language Models: An
Empirical Study [90.34226812493083]
本研究の目的は,LLMを小言語モデルと区別する重要な特徴である現象能力に対する量子化の影響を検討することである。
実験により、これらの創発能力は4ビット量子化モデルに残っており、2ビットモデルは深刻な性能劣化に直面していることがわかった。
低ビットモデルの性能向上のために,(1) 部品(またはサブ構造)が量子化に敏感である場合の微視的影響解析,(2) モデル微視化による性能補償の2つの実験を行った。
論文 参考訳(メタデータ) (2023-07-16T15:11:01Z) - PreQuant: A Task-agnostic Quantization Approach for Pre-trained Language
Models [52.09865918265002]
ファインチューニングのフレームワークPreQuantに先立って,新しい量子化を提案する。
PreQuantは様々な量子化戦略と互換性があり、インダクションされた量子化誤差を修正するために、アウタリア対応の微調整が組み込まれている。
BERT,RoBERTa,T5を用いたGLUEベンチマークにおけるPreQuantの有効性を示す。
論文 参考訳(メタデータ) (2023-05-30T08:41:33Z) - Classical-to-Quantum Transfer Learning Facilitates Machine Learning with Variational Quantum Circuit [62.55763504085508]
本稿では,変分量子回路(VQC)を用いた古典的量子移動学習アーキテクチャにより,VQCモデルの表現と一般化(推定誤差)が向上することを証明する。
古典-量子遷移学習のアーキテクチャは、事前学習された古典的生成AIモデルを活用し、訓練段階におけるVQCの最適パラメータの発見を容易にする。
論文 参考訳(メタデータ) (2023-05-18T03:08:18Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - A preprocessing perspective for quantum machine learning classification
advantage using NISQ algorithms [0.0]
変分量子アルゴリズム(VQA)は,LDA法とバランスの取れた精度で性能が向上したことを示す。
現在の量子コンピュータはノイズが多く、テストする量子ビットは少ないため、QML法の現在の量子的利点と潜在的な量子的優位性を実証することは困難である。
論文 参考訳(メタデータ) (2022-08-28T16:58:37Z) - Mixed Precision Low-bit Quantization of Neural Network Language Models
for Speech Recognition [67.95996816744251]
長期間のメモリリカレントニューラルネットワーク(LSTM-RNN)とトランスフォーマーで表される最先端言語モデル(LM)は、実用アプリケーションではますます複雑で高価なものになりつつある。
現在の量子化法は、均一な精度に基づいており、量子化誤差に対するLMの異なる部分での様々な性能感度を考慮できない。
本稿では,新しい混合精度ニューラルネットワークLM量子化法を提案する。
論文 参考訳(メタデータ) (2021-11-29T12:24:02Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。