InfiFPO: Implicit Model Fusion via Preference Optimization in Large Language Models
- URL: http://arxiv.org/abs/2505.13878v1
- Date: Tue, 20 May 2025 03:32:37 GMT
- Title: InfiFPO: Implicit Model Fusion via Preference Optimization in Large Language Models
- Authors: Yanggan Gu, Zhaoyi Yan, Yuanyi Wang, Yiming Zhang, Qi Zhou, Fei Wu, Hongxia Yang,
- Abstract summary: InfiFPO is a preference optimization method for implicit model fusion.<n>It enables the pivot model to align with human preferences while effectively distilling knowledge from source models.<n>It significantly improves its capabilities in mathematics, coding, and reasoning tasks.
- Score: 36.27704594180795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model fusion combines multiple Large Language Models (LLMs) with different strengths into a more powerful, integrated model through lightweight training methods. Existing works on model fusion focus primarily on supervised fine-tuning (SFT), leaving preference alignment (PA) --a critical phase for enhancing LLM performance--largely unexplored. The current few fusion methods on PA phase, like WRPO, simplify the process by utilizing only response outputs from source models while discarding their probability information. To address this limitation, we propose InfiFPO, a preference optimization method for implicit model fusion. InfiFPO replaces the reference model in Direct Preference Optimization (DPO) with a fused source model that synthesizes multi-source probabilities at the sequence level, circumventing complex vocabulary alignment challenges in previous works and meanwhile maintaining the probability information. By introducing probability clipping and max-margin fusion strategies, InfiFPO enables the pivot model to align with human preferences while effectively distilling knowledge from source models. Comprehensive experiments on 11 widely-used benchmarks demonstrate that InfiFPO consistently outperforms existing model fusion and preference optimization methods. When using Phi-4 as the pivot model, InfiFPO improve its average performance from 79.95 to 83.33 on 11 benchmarks, significantly improving its capabilities in mathematics, coding, and reasoning tasks.
Related papers
- Divergence Minimization Preference Optimization for Diffusion Model Alignment [58.651951388346525]
Divergence Minimization Preference Optimization (DMPO) is a principled method for aligning diffusion models by minimizing reverse KL divergence.<n>Our results show that diffusion models fine-tuned with DMPO can consistently outperform or match existing techniques.<n>DMPO unlocks a robust and elegant pathway for preference alignment, bridging principled theory with practical performance in diffusion models.
arXiv Detail & Related papers (2025-07-10T07:57:30Z) - FuseRL: Dense Preference Optimization for Heterogeneous Model Fusion [33.5714726499406]
We propose a two-stage framework comprising FuseSFT and FusePO to maximize the utilization of source LLMs.<n>FusePO optimize weighted preferences based on the outputs of multiple source models to enable superior alignment performance.<n>Our approach achieves state-of-the-art performance among 8B LLMs on the AlpacaEval-2 and Arena-Hard benchmarks.
arXiv Detail & Related papers (2025-04-09T03:51:53Z) - InPO: Inversion Preference Optimization with Reparametrized DDIM for Efficient Diffusion Model Alignment [12.823734370183482]
We introduce DDIM-InPO, an efficient method for direct preference alignment of diffusion models.<n>Our approach conceptualizes diffusion model as a single-step generative model, allowing us to fine-tune the outputs of specific latent variables selectively.<n> Experimental results indicate that our DDIM-InPO achieves state-of-the-art performance with just 400 steps of fine-tuning.
arXiv Detail & Related papers (2025-03-24T08:58:49Z) - DiffPO: Diffusion-styled Preference Optimization for Efficient Inference-Time Alignment of Large Language Models [50.32663816994459]
Diffusion-styled Preference Optimization (model) provides an efficient and policy-agnostic solution for aligning LLMs with humans.<n>modelavoids the time latency associated with token-level generation.<n>Experiments on AlpacaEval 2, MT-bench, and HH-RLHF demonstrate that modelachieves superior alignment performance across various settings.
arXiv Detail & Related papers (2025-03-06T09:21:54Z) - InfiFusion: A Unified Framework for Enhanced Cross-Model Reasoning via LLM Fusion [35.98702433016698]
InfiFusion is an efficient training pipeline designed to integrate domain-specialized Large Language Models (LLMs) into a single pivot model.<n>We propose two fusion strategies: Pairwise Fusion (InfiFusion$_p$) and Unified Fusion (InfiFusion$_u$)<n>InfiFusion outperforms the state-of-the-art models, such as Qwen-2.5-14B-Instruct and Phi-4, across 11 widely applied benchmarks.
arXiv Detail & Related papers (2025-01-06T06:29:55Z) - Understanding Reinforcement Learning-Based Fine-Tuning of Diffusion Models: A Tutorial and Review [63.31328039424469]
This tutorial provides a comprehensive survey of methods for fine-tuning diffusion models to optimize downstream reward functions.
We explain the application of various RL algorithms, including PPO, differentiable optimization, reward-weighted MLE, value-weighted sampling, and path consistency learning.
arXiv Detail & Related papers (2024-07-18T17:35:32Z) - Decoding-Time Language Model Alignment with Multiple Objectives [116.42095026960598]
Existing methods primarily focus on optimizing LMs for a single reward function, limiting their adaptability to varied objectives.
Here, we propose $textbfmulti-objective decoding (MOD)$, a decoding-time algorithm that outputs the next token from a linear combination of predictions.
We show why existing approaches can be sub-optimal even in natural settings and obtain optimality guarantees for our method.
arXiv Detail & Related papers (2024-06-27T02:46:30Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - Self-Play Preference Optimization for Language Model Alignment [75.83359213697854]
Recent advancements suggest that directly working with preference probabilities can yield a more accurate reflection of human preferences.
We propose a self-play-based method for language model alignment, which treats the problem as a constant-sum two-player game.
Our approach, dubbed Self-Play Preference Optimization (SPPO), utilizes iterative policy updates to provably approximate the Nash equilibrium.
arXiv Detail & Related papers (2024-05-01T17:59:20Z) - Model Extrapolation Expedites Alignment [135.12769233630362]
We propose a method called ExPO to expedite alignment training with human preferences.<n>We demonstrate that ExPO boosts a DPO model trained with only 20% steps to outperform the fully-trained one.<n>We show that ExPO notably improves existing open-source LLMs on the leading AlpacaEval 2.0 and MT-Bench benchmarks.
arXiv Detail & Related papers (2024-04-25T17:39:50Z) - Diffusion Model Alignment Using Direct Preference Optimization [103.2238655827797]
Diffusion-DPO is a method to align diffusion models to human preferences by directly optimizing on human comparison data.
We fine-tune the base model of the state-of-the-art Stable Diffusion XL (SDXL)-1.0 model with Diffusion-DPO.
We also develop a variant that uses AI feedback and has comparable performance to training on human preferences.
arXiv Detail & Related papers (2023-11-21T15:24:05Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.