Certifiably Safe Manipulation of Deformable Linear Objects via Joint Shape and Tension Prediction
- URL: http://arxiv.org/abs/2505.13889v1
- Date: Tue, 20 May 2025 03:50:29 GMT
- Title: Certifiably Safe Manipulation of Deformable Linear Objects via Joint Shape and Tension Prediction
- Authors: Yiting Zhang, Shichen Li,
- Abstract summary: We propose a certifiably safe motion planning and framework for DLO manipulation.<n>At the core of our method is a predictive model that jointly estimates the DLO's future shape and tension.<n>Compared to state-of-theart methods, our approach achieves a higher task success rate while avoiding all safety violations.
- Score: 0.11510009152620666
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Manipulating deformable linear objects (DLOs) is challenging due to their complex dynamics and the need for safe interaction in contact-rich environments. Most existing models focus on shape prediction alone and fail to account for contact and tension constraints, which can lead to damage to both the DLO and the robot. In this work, we propose a certifiably safe motion planning and control framework for DLO manipulation. At the core of our method is a predictive model that jointly estimates the DLO's future shape and tension. These predictions are integrated into a real-time trajectory optimizer based on polynomial zonotopes, allowing us to enforce safety constraints throughout the execution. We evaluate our framework on a simulated wire harness assembly task using a 7-DOF robotic arm. Compared to state-of-the-art methods, our approach achieves a higher task success rate while avoiding all safety violations. The results demonstrate that our method enables robust and safe DLO manipulation in contact-rich environments.
Related papers
- Designing Control Barrier Function via Probabilistic Enumeration for Safe Reinforcement Learning Navigation [55.02966123945644]
We propose a hierarchical control framework leveraging neural network verification techniques to design control barrier functions (CBFs) and policy correction mechanisms.<n>Our approach relies on probabilistic enumeration to identify unsafe regions of operation, which are then used to construct a safe CBF-based control layer.<n>These experiments demonstrate the ability of the proposed solution to correct unsafe actions while preserving efficient navigation behavior.
arXiv Detail & Related papers (2025-04-30T13:47:25Z) - Safe LLM-Controlled Robots with Formal Guarantees via Reachability Analysis [0.6749750044497732]
This paper introduces a safety assurance framework for Large Language Models (LLMs)-controlled robots based on data-driven reachability analysis.<n>Our approach provides rigorous safety guarantees against unsafe behaviors without relying on explicit analytical models.
arXiv Detail & Related papers (2025-03-05T21:23:15Z) - DEFT: Differentiable Branched Discrete Elastic Rods for Modeling Furcated DLOs in Real-Time [10.491351627036707]
Differentiable discrete branched Elastic rods for modeling Furcated DLOs in real-Time (DEFT)<n>This paper presents Differentiable discrete branched Elastic rods for modeling Furcated DLOs in real-Time (DEFT)
arXiv Detail & Related papers (2025-02-20T20:46:09Z) - Generalizing Safety Beyond Collision-Avoidance via Latent-Space Reachability Analysis [6.267574471145217]
Hamilton-Jacobi (H) reachability is a rigorous framework that enables robots to simultaneously detect unsafe states and generate actions.<n>We propose La Safety Filters, a latent-space reachability that operates directly on raw observation data.
arXiv Detail & Related papers (2025-02-02T22:00:20Z) - What Makes and Breaks Safety Fine-tuning? A Mechanistic Study [64.9691741899956]
Safety fine-tuning helps align Large Language Models (LLMs) with human preferences for their safe deployment.
We design a synthetic data generation framework that captures salient aspects of an unsafe input.
Using this, we investigate three well-known safety fine-tuning methods.
arXiv Detail & Related papers (2024-07-14T16:12:57Z) - Uniformly Safe RL with Objective Suppression for Multi-Constraint Safety-Critical Applications [73.58451824894568]
The widely adopted CMDP model constrains the risks in expectation, which makes room for dangerous behaviors in long-tail states.
In safety-critical domains, such behaviors could lead to disastrous outcomes.
We propose Objective Suppression, a novel method that adaptively suppresses the task reward maximizing objectives according to a safety critic.
arXiv Detail & Related papers (2024-02-23T23:22:06Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - DexDLO: Learning Goal-Conditioned Dexterous Policy for Dynamic
Manipulation of Deformable Linear Objects [7.72979328949568]
We present DexDLO, a model-free framework that learns dexterous dynamic manipulation policies for deformable linear objects with a fixed-base dexterous hand.
We show that our framework can efficiently learn five different DLO manipulation tasks with the same framework parameters.
arXiv Detail & Related papers (2023-12-23T09:26:20Z) - In-Distribution Barrier Functions: Self-Supervised Policy Filters that
Avoid Out-of-Distribution States [84.24300005271185]
We propose a control filter that wraps any reference policy and effectively encourages the system to stay in-distribution with respect to offline-collected safe demonstrations.
Our method is effective for two different visuomotor control tasks in simulation environments, including both top-down and egocentric view settings.
arXiv Detail & Related papers (2023-01-27T22:28:19Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
We present an online framework for safe crowd-robot interaction based on risk-sensitive optimal control, wherein the risk is modeled by the entropic risk measure.
Our modular approach decouples the crowd-robot interaction into learning-based prediction and model-based control.
A simulation study and a real-world experiment show that the proposed framework can accomplish safe and efficient navigation while avoiding collisions with more than 50 humans in the scene.
arXiv Detail & Related papers (2020-09-12T02:02:52Z) - Safe reinforcement learning for probabilistic reachability and safety
specifications: A Lyapunov-based approach [2.741266294612776]
We propose a model-free safety specification method that learns the maximal probability of safe operation.
Our approach constructs a Lyapunov function with respect to a safe policy to restrain each policy improvement stage.
It yields a sequence of safe policies that determine the range of safe operation, called the safe set.
arXiv Detail & Related papers (2020-02-24T09:20:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.