論文の概要: AUTOLAW: Enhancing Legal Compliance in Large Language Models via Case Law Generation and Jury-Inspired Deliberation
- arxiv url: http://arxiv.org/abs/2505.14015v1
- Date: Tue, 20 May 2025 07:09:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:52.84887
- Title: AUTOLAW: Enhancing Legal Compliance in Large Language Models via Case Law Generation and Jury-Inspired Deliberation
- Title(参考訳): AUTOLAW: 判例法生成と陪審発案審議会による大規模言語モデルの法的コンプライアンス向上
- Authors: Tai D. Nguyen, Long H. Pham, Jun Sun,
- Abstract要約: AutoLawは、ドメイン固有の大規模言語モデル(LLM)のための新しい違反検出フレームワークである。
LLMの法的コンプライアンスを強化するために、敵対的なデータ生成と陪審に触発された審議プロセスを組み合わせる。
本研究は, 法的不一致を適応的に調査し, 信頼性の高い文脈対応の判断を下すフレームワークの能力を強調した。
- 参考スコア(独自算出の注目度): 5.732271982985626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of domain-specific large language models (LLMs) in fields like law necessitates frameworks that account for nuanced regional legal distinctions, which are critical for ensuring compliance and trustworthiness. Existing legal evaluation benchmarks often lack adaptability and fail to address diverse local contexts, limiting their utility in dynamically evolving regulatory landscapes. To address these gaps, we propose AutoLaw, a novel violation detection framework that combines adversarial data generation with a jury-inspired deliberation process to enhance legal compliance of LLMs. Unlike static approaches, AutoLaw dynamically synthesizes case law to reflect local regulations and employs a pool of LLM-based "jurors" to simulate judicial decision-making. Jurors are ranked and selected based on synthesized legal expertise, enabling a deliberation process that minimizes bias and improves detection accuracy. Evaluations across three benchmarks: Law-SG, Case-SG (legality), and Unfair-TOS (policy), demonstrate AutoLaw's effectiveness: adversarial data generation improves LLM discrimination, while the jury-based voting strategy significantly boosts violation detection rates. Our results highlight the framework's ability to adaptively probe legal misalignments and deliver reliable, context-aware judgments, offering a scalable solution for evaluating and enhancing LLMs in legally sensitive applications.
- Abstract(参考訳): 法律のような分野におけるドメイン固有な大規模言語モデル(LLM)の急速な進歩は、コンプライアンスと信頼性を確保する上で重要な、地域法的な不明瞭さを考慮に入れたフレームワークを必要とする。
既存の法的な評価ベンチマークは、適応性に欠けることが多く、様々なローカルコンテキストに対処できず、動的に進化する規制の状況において、その実用性を制限している。
これらのギャップに対処するため,LLMの法的コンプライアンスを強化するために,敵対的データ生成と陪審主導の審議プロセスを組み合わせた新たな違反検出フレームワークであるAutoLawを提案する。
静的アプローチとは異なり、AutoLawは局所的な規制を反映するためにケースローを動的に合成し、司法判断をシミュレートするためにLLMベースの陪審員のプールを使用する。
審査員は、合成された法律の専門知識に基づいてランク付けされ、バイアスを最小化し、検出精度を向上させる熟考プロセスを可能にする。
Law-SG、Case-SG(合法性)、Unfair-TOS(政治)の3つのベンチマークによる評価は、AutoLawの有効性を示している。
本研究は,LLMを法に敏感なアプリケーションで評価・拡張するためのスケーラブルなソリューションとして,法的なミスアライメントを適応的に探索し,信頼性の高いコンテキスト対応の判断を提供するフレームワークの能力を強調した。
関連論文リスト
- A Law Reasoning Benchmark for LLM with Tree-Organized Structures including Factum Probandum, Evidence and Experiences [76.73731245899454]
本稿では,階層的なファクトラム,証拠,暗黙的な経験に富む透明な法理推論スキーマを提案する。
このスキーマにインスパイアされた課題は、テキストのケース記述を取り込み、最終決定を正当化する階層構造を出力する。
このベンチマークは、Intelligent Courtにおける透明で説明可能なAI支援法推論の道を開く」。
論文 参考訳(メタデータ) (2025-03-02T10:26:54Z) - LegalAgentBench: Evaluating LLM Agents in Legal Domain [53.70993264644004]
LegalAgentBenchは、中国の法律領域でLLMエージェントを評価するために特別に設計されたベンチマークである。
LegalAgentBenchには、現実世界の法的シナリオから17のコーパスが含まれており、外部知識と対話するための37のツールを提供している。
論文 参考訳(メタデータ) (2024-12-23T04:02:46Z) - TRACE: TRansformer-based Attribution using Contrastive Embeddings in LLMs [50.259001311894295]
TRACE と呼ばれるコントラスト埋め込みを用いた新しいTRansformer-based Attribution フレームワークを提案する。
TRACEは情報源の属性を精度良く改善し,大規模言語モデルの信頼性と信頼性を高める貴重なツールであることを示す。
論文 参考訳(メタデータ) (2024-07-06T07:19:30Z) - Enabling Discriminative Reasoning in LLMs for Legal Judgment Prediction [23.046342240176575]
人間の推論に触発されたAsk-Discriminate-Predict(ADAPT)推論フレームワークを紹介する。
ADAPTは、ケース事実を分解し、潜在的な電荷を識別し、最終的な判断を予測する。
広く利用されている2つのデータセットに対して行われた実験は、法的な判断予測において、我々のフレームワークの優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-02T05:43:15Z) - InternLM-Law: An Open Source Chinese Legal Large Language Model [72.2589401309848]
InternLM-Lawは、中国法に関する様々な法的クエリに対処するための特殊なLLMである。
われわれは、中国法域に100万以上のクエリを含むデータセットを慎重に構築する。
InternLM-LawはLawBench上で最高の平均性能を達成し、20サブタスク中13サブタスクでGPT-4を含む最先端モデルを上回っている。
論文 参考訳(メタデータ) (2024-06-21T06:19:03Z) - A Comprehensive Evaluation of Large Language Models on Legal Judgment
Prediction [60.70089334782383]
大規模言語モデル(LLM)は、ドメイン固有のアプリケーションに大きな可能性を示している。
GPT-4の法律評価をめぐる近年の論争は、現実の法的タスクにおけるパフォーマンスに関する疑問を提起している。
我々は,LLMに基づく実践的ベースラインソリューションを設計し,法的判断予測の課題を検証した。
論文 参考訳(メタデータ) (2023-10-18T07:38:04Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
法的判断予測(LJP)は、法律AIにおいてますます重要な課題となっている。
先行は、同様の事実を持つ以前の訴訟であり、国家法制度におけるその後の事件の判断の基礎となっている。
近年のディープラーニングの進歩により、LJPタスクの解決に様々なテクニックが使えるようになった。
論文 参考訳(メタデータ) (2023-10-13T16:47:20Z) - Large Language Models as Tax Attorneys: A Case Study in Legal
Capabilities Emergence [5.07013500385659]
本稿では,税法の適用におけるLarge Language Models(LLM)の機能について考察する。
実験では,その後のOpenAIモデルリリースにおけるパフォーマンスの向上とともに,新たな法的理解能力を実証した。
発見は、特に拡張の促進と正しい法的文書と組み合わせることで、高いレベルの精度で実行可能であるが、専門家の税務弁護士レベルではまだ実行できないことを示している。
論文 参考訳(メタデータ) (2023-06-12T12:40:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。