論文の概要: Large Language Models as Tax Attorneys: A Case Study in Legal
Capabilities Emergence
- arxiv url: http://arxiv.org/abs/2306.07075v1
- Date: Mon, 12 Jun 2023 12:40:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-13 14:41:01.152378
- Title: Large Language Models as Tax Attorneys: A Case Study in Legal
Capabilities Emergence
- Title(参考訳): 税務弁護士としての大規模言語モデル--法的能力の出現を事例として
- Authors: John J. Nay, David Karamardian, Sarah B. Lawsky, Wenting Tao, Meghana
Bhat, Raghav Jain, Aaron Travis Lee, Jonathan H. Choi, Jungo Kasai
- Abstract要約: 本稿では,税法の適用におけるLarge Language Models(LLM)の機能について考察する。
実験では,その後のOpenAIモデルリリースにおけるパフォーマンスの向上とともに,新たな法的理解能力を実証した。
発見は、特に拡張の促進と正しい法的文書と組み合わせることで、高いレベルの精度で実行可能であるが、専門家の税務弁護士レベルではまだ実行できないことを示している。
- 参考スコア(独自算出の注目度): 5.07013500385659
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Better understanding of Large Language Models' (LLMs) legal analysis
abilities can contribute to improving the efficiency of legal services,
governing artificial intelligence, and leveraging LLMs to identify
inconsistencies in law. This paper explores LLM capabilities in applying tax
law. We choose this area of law because it has a structure that allows us to
set up automated validation pipelines across thousands of examples, requires
logical reasoning and maths skills, and enables us to test LLM capabilities in
a manner relevant to real-world economic lives of citizens and companies. Our
experiments demonstrate emerging legal understanding capabilities, with
improved performance in each subsequent OpenAI model release. We experiment
with retrieving and utilising the relevant legal authority to assess the impact
of providing additional legal context to LLMs. Few-shot prompting, presenting
examples of question-answer pairs, is also found to significantly enhance the
performance of the most advanced model, GPT-4. The findings indicate that LLMs,
particularly when combined with prompting enhancements and the correct legal
texts, can perform at high levels of accuracy but not yet at expert tax lawyer
levels. As LLMs continue to advance, their ability to reason about law
autonomously could have significant implications for the legal profession and
AI governance.
- Abstract(参考訳): LLM(Large Language Models)の法解析能力の理解の向上は、法律サービスの効率の向上、人工知能の管理、LLMの活用による法の矛盾の特定に寄与する。
本稿では,税法適用におけるLLM機能について考察する。
何千もの例にまたがって自動検証パイプラインをセットアップし、論理的推論と数学のスキルを必要とし、市民や企業の実際の経済生活に関連する方法でllmの能力をテストすることができる構造を持っているため、この領域を選択します。
実験では,その後のOpenAIモデルリリースにおけるパフォーマンスの向上とともに,新たな法的理解能力を示す。
我々は、LLMに追加の法的文脈を提供することの影響を評価するために、関連する法的権限の取得と活用を試みている。
最も先進的なモデルであるgpt-4の性能を著しく向上させるのが、質問と回答のペアの例を示す、少数ショットプロンプトである。
以上の結果から, LLMは特に, 改善の促進と適切な法的文章とを組み合わせれば, 高い精度で実行可能であるが, 専門家の税理士レベルではまだ実行できないことが示唆された。
LLMが進歩を続けるにつれて、法律を自律的に推論する能力は、法律専門家やAIガバナンスに重大な影響を及ぼす可能性がある。
関連論文リスト
- Can Large Language Models Grasp Legal Theories? Enhance Legal Reasoning with Insights from Multi-Agent Collaboration [27.047809869136458]
大きな言語モデル(LLM)は、法的理論を完全に理解し、法的推論タスクを実行するのに苦労する可能性がある。
法理論と推論能力に対するLLMの理解をよりよく評価するための課題(電荷予測の解釈)を導入する。
複雑な法的推論機能を改善するためのマルチエージェントフレームワークも提案する。
論文 参考訳(メタデータ) (2024-10-03T14:15:00Z) - Optimizing Numerical Estimation and Operational Efficiency in the Legal Domain through Large Language Models [13.067312163677933]
本稿では,Large Language Modelsと特殊設計のプロンプトを統合して,法的な人工知能(LegalAI)アプリケーションにおける精度要件に対処する手法を提案する。
本手法を検証するために,精度指向の LegalAI タスクに適したキュレートデータセットを提案する。
論文 参考訳(メタデータ) (2024-07-26T18:46:39Z) - InternLM-Law: An Open Source Chinese Legal Large Language Model [72.2589401309848]
InternLM-Lawは、中国法に関する様々な法的クエリに対処するための特殊なLLMである。
われわれは、中国法域に100万以上のクエリを含むデータセットを慎重に構築する。
InternLM-LawはLawBench上で最高の平均性能を達成し、20サブタスク中13サブタスクでGPT-4を含む最先端モデルを上回っている。
論文 参考訳(メタデータ) (2024-06-21T06:19:03Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
大規模言語モデル(LLM)は、金融、医療、法律の展望に革命をもたらしている。
我々は、医療における診断・治療方法論の強化、財務分析の革新、法的解釈・コンプライアンス戦略の精査におけるLCMの役割を強調した。
これらの分野におけるLLMアプリケーションの倫理を批判的に検討し、既存の倫理的懸念と透明で公平で堅牢なAIシステムの必要性を指摘した。
論文 参考訳(メタデータ) (2024-05-02T22:43:02Z) - Exploring the Nexus of Large Language Models and Legal Systems: A Short Survey [1.0770079992809338]
LLM(Large Language Models)の能力は、法律分野におけるユニークな役割をますます示している。
この調査は、法的テキスト理解、事例検索、分析などのタスクにおけるLLMと法体系の相乗効果について考察する。
この調査では、さまざまな法律システム用に調整された微調整された法的なLLMの最新の進歩と、さまざまな言語で微調整されたLLMのための法的なデータセットが紹介されている。
論文 参考訳(メタデータ) (2024-04-01T08:35:56Z) - A Comprehensive Evaluation of Large Language Models on Legal Judgment
Prediction [60.70089334782383]
大規模言語モデル(LLM)は、ドメイン固有のアプリケーションに大きな可能性を示している。
GPT-4の法律評価をめぐる近年の論争は、現実の法的タスクにおけるパフォーマンスに関する疑問を提起している。
我々は,LLMに基づく実践的ベースラインソリューションを設計し,法的判断予測の課題を検証した。
論文 参考訳(メタデータ) (2023-10-18T07:38:04Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
法的判断予測(LJP)は、法律AIにおいてますます重要な課題となっている。
先行は、同様の事実を持つ以前の訴訟であり、国家法制度におけるその後の事件の判断の基礎となっている。
近年のディープラーニングの進歩により、LJPタスクの解決に様々なテクニックが使えるようになった。
論文 参考訳(メタデータ) (2023-10-13T16:47:20Z) - LAiW: A Chinese Legal Large Language Models Benchmark [17.66376880475554]
一般および法的ドメイン LLM は LegalAI の様々なタスクにおいて高いパフォーマンスを示している。
われわれは、法的な実践の論理に基づいて、中国の法的LLMベンチマークLAiWを最初に構築しました。
論文 参考訳(メタデータ) (2023-10-09T11:19:55Z) - A Short Survey of Viewing Large Language Models in Legal Aspect [0.0]
大規模言語モデル(LLM)は、自然言語処理、コンピュータビジョン、強化学習など、多くの分野に変化をもたらした。
LLMの法的分野への統合は、プライバシーの懸念、偏見、説明可能性など、いくつかの法的問題を引き起こしている。
論文 参考訳(メタデータ) (2023-03-16T08:01:22Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
我々は,中国法定長文理解のためのLongformerベースの事前学習言語モデル,Lawformerをリリースする。
判決の予測,類似事例の検索,法的読解,法的質問の回答など,さまざまな法務上の課題について法務担当者を評価した。
論文 参考訳(メタデータ) (2021-05-09T09:39:25Z) - How Does NLP Benefit Legal System: A Summary of Legal Artificial
Intelligence [81.04070052740596]
法律人工知能(Legal AI)は、人工知能、特に自然言語処理の技術を適用して、法的領域におけるタスクに役立てることに焦点を当てている。
本稿では,LegalAIにおける研究の歴史,現状,今後の方向性について紹介する。
論文 参考訳(メタデータ) (2020-04-25T14:45:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。