Noisy simulations of Quantum Walk and Quantum Walk search via Quantum Cellular Automata on a semiconducting spin processor emulator
- URL: http://arxiv.org/abs/2505.14134v1
- Date: Tue, 20 May 2025 09:39:06 GMT
- Title: Noisy simulations of Quantum Walk and Quantum Walk search via Quantum Cellular Automata on a semiconducting spin processor emulator
- Authors: Andrea Mammola, Quentin Schaeverbeke, Giuseppe Di Molfetta,
- Abstract summary: We map NISQ-friendly implementations of the non-interacting QCA to a circuit Quantum Electrodynamics (cQED) hardware.<n>We perform both noiseless and noisy simulations of the QCA one particle sector, namely the Quantum Walk, on N-cycles and NxN torus graphs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we map NISQ-friendly implementations of the non-interacting QCA to a circuit Quantum Electrodynamics (cQED) hardware. We perform both noiseless and noisy simulations of the QCA one particle sector, namely the Quantum Walk, on N-cycles and NxN torus graphs. Moreover, in such a framework we also investigate the searching problem. The noiseless simulations are conducted with the Qiskit Aer simulator, while the noisy simulations with C12 Quantum Electronics in-house noisy emulator, Callisto. We benchmark the performance of our implementations by analyzing the simulations via relevant metrics and quantities such as the state count distributions, the Hellinger Fidelity, the l1 distance, the hitting time, and success probability. Our results demonstrate that the QCA framework, in combination with cQED processors, holds promise as an effective platform for early NISQ implementations of Quantum Walk and Quantum Walk Search algorithms.
Related papers
- DiaQ: Efficient State-Vector Quantum Simulation [2.2854510798816525]
We present a novel observation regarding the prevalent sparsity patterns inherent in quantum circuits.
We introduce DiaQ, a new sparse matrix format tailored to exploit this quantum-specific sparsity, thereby enhancing simulation performance.
arXiv Detail & Related papers (2024-04-30T23:15:55Z) - Sparse Simulation of VQE Circuits [0.0]
Variational Quantum Eigensolver (VQE) is a promising algorithm for future Noisy Intermediate-Scale Quantum (NISQ) devices.<n>In this paper, we consider the classical simulation of the iterative Qubit Coupled Cluster (iQCC) ansatz.
arXiv Detail & Related papers (2024-04-15T18:00:05Z) - Digital Quantum Simulation of Cavity Quantum Electrodynamics: Insights from Superconducting and Trapped Ion Quantum Testbeds [0.016994625126740815]
We simulate open Cavity Quantum Electrodynamical (CQED) systems for applications in optical quantum communication, simulation and computing.<n>Results can be used as a recipe for efficient and platform-specific quantum simulation of cavity-emitter systems on contemporary and future quantum computers.
arXiv Detail & Related papers (2024-04-05T02:25:49Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum support vector machines for classification and regression on a trapped-ion quantum computer [9.736685719039599]
We examine our quantum machine learning models, which are based on quantum support vector classification (QSVC) and quantum support vector regression (QSVR)
We investigate these models using a quantum-circuit simulator, both with and without noise, as well as the IonQ Harmony quantum processor.
For the classification tasks, the performance of our QSVC models using 4 qubits of the trapped-ion quantum computer was comparable to that obtained from noiseless quantum-circuit simulations.
arXiv Detail & Related papers (2023-07-05T08:06:41Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Simulations of Quantum Circuits with Approximate Noise using qsim and
Cirq [0.5701739554814172]
We introduce multinode quantum trajectory simulations with qsim, an open source high performance simulator of quantum circuits.
We present a novel delayed inner product algorithm for quantum trajectories which can result in an order of magnitude speedup for low noise simulation.
arXiv Detail & Related papers (2021-11-03T17:59:03Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.