DiaQ: Efficient State-Vector Quantum Simulation
- URL: http://arxiv.org/abs/2405.01250v1
- Date: Tue, 30 Apr 2024 23:15:55 GMT
- Title: DiaQ: Efficient State-Vector Quantum Simulation
- Authors: Srikar Chundury, Jiajia Li, In-Saeng Suh, Frank Mueller,
- Abstract summary: We present a novel observation regarding the prevalent sparsity patterns inherent in quantum circuits.
We introduce DiaQ, a new sparse matrix format tailored to exploit this quantum-specific sparsity, thereby enhancing simulation performance.
- Score: 2.2854510798816525
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the current era of Noisy Intermediate Scale Quantum (NISQ) computing, efficient digital simulation of quantum systems holds significant importance for quantum algorithm development, verification and validation. However, analysis of sparsity within these simulations remains largely unexplored. In this paper, we present a novel observation regarding the prevalent sparsity patterns inherent in quantum circuits. We introduce DiaQ, a new sparse matrix format tailored to exploit this quantum-specific sparsity, thereby enhancing simulation performance. Our contribution extends to the development of libdiaq, a numerical library implemented in C++ with OpenMP for multi-core acceleration and SIMD vectorization, featuring essential mathematical kernels for digital quantum simulations. Furthermore, we integrate DiaQ with SV-Sim, a state vector simulator, yielding substantial performance improvements across various quantum circuits (e.g., ~26.67% for GHZ-28 and ~32.72% for QFT-29 with multi-core parallelization and SIMD vectorization on Frontier). Evaluations conducted on benchmarks from SupermarQ and QASMBench demonstrate that DiaQ represents a significant step towards achieving highly efficient quantum simulations.
Related papers
- Efficient charge-preserving excited state preparation with variational quantum algorithms [33.03471460050495]
We introduce a charge-preserving VQD (CPVQD) algorithm, designed to incorporate symmetry and the corresponding conserved charge into the VQD framework.
Results show applications in high-energy physics, nuclear physics, and quantum chemistry.
arXiv Detail & Related papers (2024-10-18T10:30:14Z) - Queen: A quick, scalable, and comprehensive quantum circuit simulation for supercomputing [2.821829060100186]
We present an innovative quantum circuit simulation toolkit comprising gate optimization and simulation modules.
We achieve averaging 9 times speedup compared to state-of-the-art simulators, including QuEST, IBM-Aer, and NVIDIA-cuQuantum.
We believe the proposed toolkit paves the way for faster quantum circuit simulations, thereby facilitating the development of novel quantum algorithms.
arXiv Detail & Related papers (2024-06-20T08:00:41Z) - Multi-reference Quantum Davidson Algorithm for Quantum Dynamics [3.3869539907606603]
Quantum Krylov Subspace (QKS) methods have been developed, enhancing the ability to perform accelerated simulations on noisy intermediate-scale quantum computers.
We introduce and evaluate two QKS methods derived from the QDavidson algorithm, a novel approach for determining the ground and excited states of many-body systems.
arXiv Detail & Related papers (2024-06-12T22:30:52Z) - Sparse Simulation of VQE Circuits for Quantum Chemistry [0.0]
Variational Quantum Eigensolver (VQE) is a promising algorithm for future Noisy Intermediate-Scale Quantum (NISQ) devices.
In this paper, we consider the classical simulation of the iterative Qubit Coupled Cluster (iQCC) ansatz.
arXiv Detail & Related papers (2024-04-15T18:00:05Z) - Quantum Tunneling: From Theory to Error-Mitigated Quantum Simulation [49.1574468325115]
This study presents the theoretical background and the hardware aware circuit implementation of a quantum tunneling simulation.
We use error mitigation techniques (ZNE and REM) and multiprogramming of the quantum chip for solving the hardware under-utilization problem.
arXiv Detail & Related papers (2024-04-10T14:27:07Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Optimized Quantum Phase Estimation for Simulating Electronic States in
Various Energy Regimes [1.2095711159999798]
The quantum phase estimation algorithm is among several approaches that have attracted much attention in recent years for its genuine quantum character.
QPESIM is a new simulation of the QPE algorithm designed to take advantage of modest computational resources.
New QPE simulations for active spaces defined by 15 active orbitals significantly reduce excitation errors in core-level energies.
arXiv Detail & Related papers (2022-06-02T00:02:11Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Parallel Simulation of Quantum Networks with Distributed Quantum State
Management [56.24769206561207]
We identify requirements for parallel simulation of quantum networks and develop the first parallel discrete event quantum network simulator.
Our contributions include the design and development of a quantum state manager that maintains shared quantum information distributed across multiple processes.
We release the parallel SeQUeNCe simulator as an open-source tool alongside the existing sequential version.
arXiv Detail & Related papers (2021-11-06T16:51:17Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.