PL-FGSA: A Prompt Learning Framework for Fine-Grained Sentiment Analysis Based on MindSpore
- URL: http://arxiv.org/abs/2505.14165v1
- Date: Tue, 20 May 2025 10:18:10 GMT
- Title: PL-FGSA: A Prompt Learning Framework for Fine-Grained Sentiment Analysis Based on MindSpore
- Authors: Zhenkai Qin, Jiajing He, Qiao Fang,
- Abstract summary: Fine-grained sentiment analysis aims to identify sentiment polarity toward specific aspects within a text.<n>Traditional FGSA approaches often require task-specific architectures and extensive annotated data.<n>We propose PL-FGSA, a unified prompt learning-based framework implemented using the MindSpore platform.<n>Our method reformulates FGSA as a multi-task prompt-augmented generation problem, jointly tackling aspect extraction, sentiment classification, and causal explanation.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Fine-grained sentiment analysis (FGSA) aims to identify sentiment polarity toward specific aspects within a text, enabling more precise opinion mining in domains such as product reviews and social media. However, traditional FGSA approaches often require task-specific architectures and extensive annotated data, limiting their generalization and scalability. To address these challenges, we propose PL-FGSA, a unified prompt learning-based framework implemented using the MindSpore platform, which integrates prompt design with a lightweight TextCNN backbone. Our method reformulates FGSA as a multi-task prompt-augmented generation problem, jointly tackling aspect extraction, sentiment classification, and causal explanation in a unified paradigm. By leveraging prompt-based guidance, PL-FGSA enhances interpretability and achieves strong performance under both full-data and low-resource conditions. Experiments on three benchmark datasets-SST-2, SemEval-2014 Task 4, and MAMS-demonstrate that our model consistently outperforms traditional fine-tuning methods and achieves F1-scores of 0.922, 0.694, and 0.597, respectively. These results validate the effectiveness of prompt-based generalization and highlight the practical value of PL-FGSA for real-world sentiment analysis tasks.
Related papers
- Iterative Augmentation with Summarization Refinement (IASR) Evaluation for Unstructured Survey data Modeling and Analysis [0.43988112145759295]
This work introduces a principled evaluation framework for large language model (LLM) based text augmentation.<n> Empirical evaluations show that GPT-3.5 Turbo achieved the best balance of semantic fidelity, diversity, and generation efficiency.
arXiv Detail & Related papers (2025-07-16T10:49:30Z) - Feature-Based vs. GAN-Based Learning from Demonstrations: When and Why [50.191655141020505]
This survey provides a comparative analysis of feature-based and GAN-based approaches to learning from demonstrations.<n>We argue that the dichotomy between feature-based and GAN-based methods is increasingly nuanced.
arXiv Detail & Related papers (2025-07-08T11:45:51Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains.<n>Most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning.<n>Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering.<n>We propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA.
arXiv Detail & Related papers (2025-06-11T12:03:52Z) - Semantic Consistency Regularization with Large Language Models for Semi-supervised Sentiment Analysis [20.503153899462323]
We propose a framework for semi-supervised sentiment analysis.<n>We introduce two prompting strategies to semantically enhance unlabeled text.<n> Experiments show our method achieves remarkable performance over prior semi-supervised methods.
arXiv Detail & Related papers (2025-01-29T12:03:11Z) - Single Ground Truth Is Not Enough: Adding Flexibility to Aspect-Based Sentiment Analysis Evaluation [41.66053021998106]
Aspect-based sentiment analysis (ABSA) is a challenging task.<n>Traditional evaluation methods often constrain ground truths (GT) to a single term.<n>We propose a novel and fully automated pipeline that expands existing evaluation sets by adding alternative valid terms for aspect and opinion.
arXiv Detail & Related papers (2024-10-13T11:48:09Z) - On The Planning Abilities of OpenAI's o1 Models: Feasibility, Optimality, and Generalizability [59.72892401927283]
We evaluate the planning capabilities of OpenAI's o1 models across a variety of benchmark tasks.
Our results reveal that o1-preview outperforms GPT-4 in adhering to task constraints.
arXiv Detail & Related papers (2024-09-30T03:58:43Z) - Deep Content Understanding Toward Entity and Aspect Target Sentiment Analysis on Foundation Models [0.8602553195689513]
Entity-Aspect Sentiment Triplet Extraction (EASTE) is a novel Aspect-Based Sentiment Analysis task.
Our research aims to achieve high performance on the EASTE task and investigates the impact of model size, type, and adaptation techniques on task performance.
Ultimately, we provide detailed insights and achieving state-of-the-art results in complex sentiment analysis.
arXiv Detail & Related papers (2024-07-04T16:48:14Z) - FedEGG: Federated Learning with Explicit Global Guidance [90.04705121816185]
Federated Learning (FL) holds great potential for diverse applications owing to its privacy-preserving nature.<n>Existing methods help address these challenges via optimization-based client constraints, adaptive client selection, or the use of pre-trained models or synthetic data.<n>We present bftextFedEGG, a new FL algorithm that constructs a global guiding task using a well-defined, easy-to-converge learning task.
arXiv Detail & Related papers (2024-04-18T04:25:21Z) - SOUL: Towards Sentiment and Opinion Understanding of Language [96.74878032417054]
We propose a new task called Sentiment and Opinion Understanding of Language (SOUL)
SOUL aims to evaluate sentiment understanding through two subtasks: Review (RC) and Justification Generation (JG)
arXiv Detail & Related papers (2023-10-27T06:48:48Z) - Domain-Expanded ASTE: Rethinking Generalization in Aspect Sentiment Triplet Extraction [67.54420015049732]
Aspect Sentiment Triplet Extraction (ASTE) is a challenging task in sentiment analysis, aiming to provide fine-grained insights into human sentiments.
Existing benchmarks are limited to two domains and do not evaluate model performance on unseen domains.
We introduce a domain-expanded benchmark by annotating samples from diverse domains, enabling evaluation of models in both in-domain and out-of-domain settings.
arXiv Detail & Related papers (2023-05-23T18:01:49Z) - Towards Unifying the Label Space for Aspect- and Sentence-based
Sentiment Analysis [16.23682353651523]
We propose a novel framework, dubbed as Dual-granularity Pseudo Labeling (DPL)
DPL has achieved state-of-the-art performance on standard benchmarks surpassing the prior work significantly.
arXiv Detail & Related papers (2022-03-14T13:21:57Z) - Generalized Few-shot Semantic Segmentation [68.69434831359669]
We introduce a new benchmark called Generalized Few-Shot Semantic (GFS-Seg) to analyze the ability of simultaneously segmenting the novel categories.
It is the first study showing that previous representative state-of-the-art generalizations fall short in GFS-Seg.
We propose the Context-Aware Prototype Learning (CAPL) that significantly improves performance by 1) leveraging the co-occurrence prior knowledge from support samples, and 2) dynamically enriching contextual information to the conditioned, on the content of each query image.
arXiv Detail & Related papers (2020-10-11T10:13:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.