Spin relaxation in a single-electron bilayer graphene quantum dot
- URL: http://arxiv.org/abs/2505.14308v1
- Date: Tue, 20 May 2025 12:58:01 GMT
- Title: Spin relaxation in a single-electron bilayer graphene quantum dot
- Authors: Lin Wang, Guido Burkard,
- Abstract summary: We study the spin relaxation in a single-electron bilayer graphene quantum dot due to the spin-orbit coupling.<n>The spin relaxation is assisted by the emission of acoustic phonons via the bond-length change and deformation potential mechanisms.
- Score: 5.577935944665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the spin relaxation in a single-electron bilayer graphene quantum dot due to the spin-orbit coupling. The spin relaxation is assisted by the emission of acoustic phonons via the bond-length change and deformation potential mechanisms and $1/f$ charge noise. In the perpendicular magnetic-field dependence of the spin relaxation rate $T_1^{-1}$, we predict a monotonic increase of $T_1^{-1}$ at higher fields where the electron-phonon coupling via the deformation potential plays a dominant role in spin relaxation. We show a less pronounced dip in $T_1^{-1}$ at lower magnetic fields due to the competition between the electron-phonon coupling due to bond-length change and $1/f$ charge noise. Finally, detailed comparisons of the magnetic-field dependence of the spin relaxation with the existing experiments by Banszerus et al. [Nat. Commun. 13, 3637 (2022)] and G\"achter et al. [PRX Quantum 3, 020343 (2022)] are reported.
Related papers
- Waveguide quantum electrodynamics at the onset of spin-spin correlations [36.136619420474766]
We find that molecules belonging to one of the two crystal sublattices form one-dimensional spin chains.<n>The microwave transmission shows evidences for the collective coupling of quasi-identical spins to the propagating photons.
arXiv Detail & Related papers (2024-04-04T18:00:05Z) - Valley relaxation in a single-electron bilayer graphene quantum dot [6.5895924005488915]
We investigate the valley relaxation due to intervalley coupling in a single-electron bilayer graphene quantum dot.
The dominant valley relaxation channel in the high-field regime is the electron-phonon coupling via the deformation potential.
Interlayer hopping $gamma_3$ opens a valley relaxation channel for electric charge noise for rotationally symmetric quantum dots in bilayer graphene.
arXiv Detail & Related papers (2024-02-28T13:49:14Z) - Dipole coupling of a bilayer graphene quantum dot to a high-impedance
microwave resonator [0.14908922253160745]
superconducting microwave resonator with a double quantum dot electrostatically defined in a graphene-based van der Waals heterostructure.
We achieve sensitive and fast detection with a signal-to-noise ratio of 3.5 within 1 $mumathrms$ integration time.
Our results introduce cQED as a probe for quantum dots in van der Waals materials and indicate a path toward coherent charge-photon coupling with bilayer graphene quantum dots.
arXiv Detail & Related papers (2023-12-22T11:59:20Z) - Three-photon electron spin resonances [0.0]
We report the observation of a three-photon resonant transition of charge-carrier spins in an organic light-emitting diode.
Ratios of drive-induced shifts of this line to those of two-emitting and one-photon shifts agree with analytical expressions derived from the Floquet Hamiltonian.
arXiv Detail & Related papers (2023-12-19T21:29:45Z) - Three-carrier spin blockade and coupling in bilayer graphene double
quantum dots [0.31458406135473804]
Recent studies report spin-relaxation times T1 up to 50ms with strong magnetic field dependence.
In out-of-plane magnetic field, the observed zero-field current peak could arise from finite-temperature co-tunneling with the leads.
In in-plane magnetic field, we observe a zero-field current dip, attributed to the competition between the spin Zeeman effect and the Kane-Mele spin-orbit interaction.
arXiv Detail & Related papers (2022-11-09T13:39:21Z) - Spin Current Density Functional Theory of the Quantum Spin-Hall Phase [59.50307752165016]
We apply the spin current density functional theory to the quantum spin-Hall phase.
We show that the explicit account of spin currents in the electron-electron potential of the SCDFT is key to the appearance of a Dirac cone.
arXiv Detail & Related papers (2022-08-29T20:46:26Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Optical Magnetometer: Quantum Resonances at pumping repetition rate of
1/n of the Larmor frequency [58.720142291102135]
Quantum sub-resonances at a repetition rate of $1/n$ of the Larmor frequency of the magnetic field inside the shield are experimentally observed and theoretically explained.
Investigations in single alkali atoms cells as well as mixed alkali atoms of K and Rb are presented.
arXiv Detail & Related papers (2020-02-20T09:14:56Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.