論文の概要: Taming Recommendation Bias with Causal Intervention on Evolving Personal Popularity
- arxiv url: http://arxiv.org/abs/2505.14310v1
- Date: Tue, 20 May 2025 12:59:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:53.231508
- Title: Taming Recommendation Bias with Causal Intervention on Evolving Personal Popularity
- Title(参考訳): パーソナライズ・リコメンデーション・バイアスと因果的介入
- Authors: Shiyin Tan, Dongyuan Li, Renhe Jiang, Zhen Wang, Xingtong Yu, Manabu Okumura,
- Abstract要約: 人気度バイアスは、人気のあるアイテムがより頻繁に推奨されるときに発生する。
既存のデバイアス手法は、人気バイアスを全ユーザーに対して均一に緩和する。
本稿では,推薦バイアスに対処するためのCausalEPP(Causal Intervention on Evolving Personal Popularity)という新しい手法を提案する。
- 参考スコア(独自算出の注目度): 21.645389873171908
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Popularity bias occurs when popular items are recommended far more frequently than they should be, negatively impacting both user experience and recommendation accuracy. Existing debiasing methods mitigate popularity bias often uniformly across all users and only partially consider the time evolution of users or items. However, users have different levels of preference for item popularity, and this preference is evolving over time. To address these issues, we propose a novel method called CausalEPP (Causal Intervention on Evolving Personal Popularity) for taming recommendation bias, which accounts for the evolving personal popularity of users. Specifically, we first introduce a metric called {Evolving Personal Popularity} to quantify each user's preference for popular items. Then, we design a causal graph that integrates evolving personal popularity into the conformity effect, and apply deconfounded training to mitigate the popularity bias of the causal graph. During inference, we consider the evolution consistency between users and items to achieve a better recommendation. Empirical studies demonstrate that CausalEPP outperforms baseline methods in reducing popularity bias while improving recommendation accuracy.
- Abstract(参考訳): 人気度バイアスは、人気のあるアイテムが推奨される頻度が、本来よりもはるかに高い場合に起こり、ユーザエクスペリエンスと推奨精度の両方に悪影響を及ぼす。
既存のデバイアス法は、人気バイアスを全ユーザに対して均一に軽減し、ユーザやアイテムの時間的進化を部分的に考慮しているだけである。
しかし、ユーザーはアイテムの人気に対して異なるレベルの好みを持っているため、この好みは時間とともに進化している。
これらの課題に対処するために,ユーザの個人的人気を増大させるレコメンデーションバイアスに対処するため,CausalEPP(Causal Intervention on Evolving Personal Popularity)と呼ばれる新しい手法を提案する。
具体的には,まず,各ユーザの人気アイテムの嗜好を定量化するために,“Evolving Personal Popularity”という指標を導入する。
そして、進化する個人人気を適合性効果に統合する因果グラフを設計し、その因果グラフの人気バイアスを軽減するために、未確立のトレーニングを適用した。
推論中、ユーザーとアイテム間の進化の一貫性を考慮し、より良いレコメンデーションを達成する。
実証的研究により、CausalEPPは人気バイアスを低減し、推奨精度を向上するベースライン法より優れていることが示された。
関連論文リスト
- Enhancing Sequential Music Recommendation with Personalized Popularity Awareness [56.972624411205224]
本稿では、パーソナライズされた人気情報をシーケンシャルなレコメンデーションに組み込む新しいアプローチを提案する。
実験結果から、パーソナライズされた最もポピュラーなレコメンデータは、既存の最先端モデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2024-09-06T15:05:12Z) - A First Look at Selection Bias in Preference Elicitation for Recommendation [64.44255178199846]
選好選好における選好バイアスの影響について検討した。
大きなハードルは、好みの推論インタラクションを持つ公開データセットがないことです。
本稿では,トピックに基づく選好提案プロセスのシミュレーションを提案する。
論文 参考訳(メタデータ) (2024-05-01T14:56:56Z) - Going Beyond Popularity and Positivity Bias: Correcting for Multifactorial Bias in Recommender Systems [74.47680026838128]
ユーザインタラクションデータとレコメンダシステム(RS)の2つの典型的なバイアスは、人気バイアスと肯定バイアスである。
項目と評価値の双方に影響される多因子選択バイアスについて検討する。
分散を低減し、最適化の堅牢性を向上させるため、スムースで交互に勾配降下する手法を提案する。
論文 参考訳(メタデータ) (2024-04-29T12:18:21Z) - Test Time Embedding Normalization for Popularity Bias Mitigation [6.145760252113906]
人気バイアスはレコメンデーションシステムの分野で広く問題となっている。
本稿では,人気バイアスを軽減するための簡易かつ効果的な戦略として,'Test Time Embedding Normalization'を提案する。
論文 参考訳(メタデータ) (2023-08-22T08:57:44Z) - Ranking with Popularity Bias: User Welfare under Self-Amplification
Dynamics [19.59766711993837]
本稿では,アイテムの人気度,商品品質,位置バイアスがユーザの選択に影響を与える一般的なメカニズムを提案し,理論的に分析する。
人気度の高い推薦者は,商品の品質と人気を混同することで,線形後悔を誘発することを示す。
論文 参考訳(メタデータ) (2023-05-24T22:38:19Z) - Personalizing Intervened Network for Long-tailed Sequential User
Behavior Modeling [66.02953670238647]
タイルユーザーは、共同トレーニング後のヘッドユーザーよりも大幅に品質の低いレコメンデーションに悩まされる。
テールユーザーで個別に訓練されたモデルは、限られたデータのために依然として劣った結果が得られる。
本稿では,テールユーザの推薦性能を大幅に向上させる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-08-19T02:50:19Z) - Reconciling the Quality vs Popularity Dichotomy in Online Cultural
Markets [62.146882023375746]
本研究では,現在普及している商品に偏りがある可能性のあるランキングアルゴリズムにより,品質基準を隠蔽した$N$アイテムをユーザに推奨する,理想化されたオンライン文化市場のモデルを提案する。
我々のゴールは、人気バイアスが高品質アイテムが低品質アイテムよりも人気になるのを防ぎ、品質と人気ランキングの間に望ましくないミスアライメントをもたらすという、よく知られた事実の根底にあるメカニズムをよりよく理解することである。
論文 参考訳(メタデータ) (2022-04-28T14:36:11Z) - Cross Pairwise Ranking for Unbiased Item Recommendation [57.71258289870123]
我々はCPR(Cross Pairwise Ranking)という新しい学習パラダイムを開発する。
CPRは、露出メカニズムを知らずに不偏の推奨を達成する。
理論的には、この方法が学習に対するユーザ/イテムの適合性の影響を相殺することを証明する。
論文 参考訳(メタデータ) (2022-04-26T09:20:27Z) - The Unfairness of Popularity Bias in Book Recommendation [0.0]
人気度バイアスとは、人気アイテムが頻繁に推奨されるのに対して、人気アイテムがほとんどあるいはまったく推奨されないという問題を指す。
本稿では,有名な書籍分類データセットを分析し,人気商品に対する傾向に基づいて3つのユーザグループを定義した。
以上の結果から,ほとんどの最先端の推薦アルゴリズムは本分野における人気バイアスに悩まされていることが示唆された。
論文 参考訳(メタデータ) (2022-02-27T20:21:46Z) - User-centered Evaluation of Popularity Bias in Recommender Systems [4.30484058393522]
推薦とランク付けシステムは人気バイアスに悩まされ、アルゴリズムは人気アイテムを数種類選んで、他の項目の大半を下書きする傾向にある。
本稿では,これらのアルゴリズムをユーザの視点から評価したい場合に,人気バイアス軽減度を評価するための既存の指標の限界を示す。
ユーザ中心の視点から,人気バイアスを緩和する効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2021-03-10T22:12:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。