Explainable AI for Securing Healthcare in IoT-Integrated 6G Wireless Networks
- URL: http://arxiv.org/abs/2505.14659v1
- Date: Tue, 20 May 2025 17:46:09 GMT
- Title: Explainable AI for Securing Healthcare in IoT-Integrated 6G Wireless Networks
- Authors: Navneet Kaur, Lav Gupta,
- Abstract summary: We show how explainable AI techniques like SHAP, LIME, and DiCE can uncover vulnerabilities, strengthen defenses, and improve trust and transparency in 6G enabled healthcare.
- Score: 1.9950682531209158
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As healthcare systems increasingly adopt advanced wireless networks and connected devices, securing medical applications has become critical. The integration of Internet of Medical Things devices, such as robotic surgical tools, intensive care systems, and wearable monitors has enhanced patient care but introduced serious security risks. Cyberattacks on these devices can lead to life threatening consequences, including surgical errors, equipment failure, and data breaches. While the ITU IMT 2030 vision highlights 6G's transformative role in healthcare through AI and cloud integration, it also raises new security concerns. This paper explores how explainable AI techniques like SHAP, LIME, and DiCE can uncover vulnerabilities, strengthen defenses, and improve trust and transparency in 6G enabled healthcare. We support our approach with experimental analysis and highlight promising results.
Related papers
- Systems-Theoretic and Data-Driven Security Analysis in ML-enabled Medical Devices [6.197430230611422]
We analyze publicly available data on device recalls and adverse events, and known vulnerabilities, to understand the threat landscape of AI/ML-enabled medical devices.<n>Our work aims to empower manufacturers to embed cybersecurity as a core design principle in AI/ML-enabled medical devices.
arXiv Detail & Related papers (2025-06-18T00:05:48Z) - Cybersecurity and Frequent Cyber Attacks on IoT Devices in Healthcare: Issues and Solutions [0.0]
Internet of Things (IoT) devices in healthcare have revolutionized patient care, offering improved monitoring, diagnostics, and treatment.<n>However, the proliferation of these devices has also introduced significant cybersecurity challenges.<n>This paper reviews the current landscape of cybersecurity threats targeting IoT devices in healthcare, discusses the underlying issues contributing to these vulnerabilities, and explores potential solutions.
arXiv Detail & Related papers (2025-01-20T03:29:07Z) - Open Problems in Machine Unlearning for AI Safety [61.43515658834902]
Machine unlearning -- the ability to selectively forget or suppress specific types of knowledge -- has shown promise for privacy and data removal tasks.<n>In this paper, we identify key limitations that prevent unlearning from serving as a comprehensive solution for AI safety.
arXiv Detail & Related papers (2025-01-09T03:59:10Z) - Overview of AI and Communication for 6G Network: Fundamentals, Challenges, and Future Research Opportunities [148.601430677814]
This paper presents a comprehensive overview of AI and communication for 6G networks.<n>We first review the driving factors behind incorporating AI into wireless communications, as well as the vision for the convergence of AI and 6G.<n>The discourse then transitions to a detailed exposition of the envisioned integration of AI within 6G networks.
arXiv Detail & Related papers (2024-12-19T05:36:34Z) - SoK: Security and Privacy Risks of Healthcare AI [15.655956766190256]
The integration of artificial intelligence (AI) and machine learning (ML) into healthcare systems holds great promise for enhancing patient care.<n>However, it also exposes sensitive data and system integrity to potential cyberattacks.<n>Current security and privacy (S&P) research on healthcare AI is highly unbalanced in terms of healthcare deployment scenarios and threat models.
arXiv Detail & Related papers (2024-09-11T16:59:58Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - Machine Learning for Healthcare-IoT Security: A Review and Risk Mitigation [4.499833362998488]
This paper reviews the fundamentals of healthcare IoT, its privacy, and data security challenges associated with machine learning and H-IoT devices.
The paper further emphasizes the importance of monitoring healthcare IoT layers such as perception, network, cloud, and application.
arXiv Detail & Related papers (2024-01-17T10:55:26Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - Towards Evaluating the Security of Wearable Devices in the Internet of Medical Things [0.0]
The Internet of Medical Things (IoMT) offers a promising solution to improve patient health and reduce human error.
Wearable smart infusion pumps that accurately administer medication and integrate with electronic health records are an example of technology that can improve healthcare.
However, as the number of connected medical devices increases, the risk of cyber threats also increases.
arXiv Detail & Related papers (2023-12-13T14:12:52Z) - Progression and Challenges of IoT in Healthcare: A Short Review [0.0]
The burgeoning field of smart healthcare is poised to generate substantial revenue in the foreseeable future.
Numerous nations have strategically deployed the Internet of Medical Things (IoMT) alongside other measures to combat the propagation of COVID-19.
The rapid and extensive adoption of IoMT worldwide has magnified issues related to security and privacy.
arXiv Detail & Related papers (2023-11-11T08:38:04Z) - The Promise and Peril of Artificial Intelligence -- Violet Teaming
Offers a Balanced Path Forward [56.16884466478886]
This paper reviews emerging issues with opaque and uncontrollable AI systems.
It proposes an integrative framework called violet teaming to develop reliable and responsible AI.
It emerged from AI safety research to manage risks proactively by design.
arXiv Detail & Related papers (2023-08-28T02:10:38Z) - Edge Intelligence for Empowering IoT-based Healthcare Systems [42.909808437026136]
This article highlights the benefits of edge intelligent technology, along with AI in smart healthcare systems.
A novel smart healthcare model is proposed to boost the utilization of AI and edge technology in smart healthcare systems.
arXiv Detail & Related papers (2021-03-22T19:35:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.