論文の概要: EmoGist: Efficient In-Context Learning for Visual Emotion Understanding
- arxiv url: http://arxiv.org/abs/2505.14660v1
- Date: Tue, 20 May 2025 17:47:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:53.656227
- Title: EmoGist: Efficient In-Context Learning for Visual Emotion Understanding
- Title(参考訳): EmoGist:視覚的感情理解のための効果的なインコンテキスト学習
- Authors: Ronald Seoh, Dan Goldwasser,
- Abstract要約: EmoGist(エモギスト)は、LVLMを用いた視覚的感情分類を行うための、トレーニング不要でコンテキスト内学習手法である。
EmoGistは、マルチラベルのMemotionデータセットを用いて、最大13ポイントのマイクロF1スコアの改善を可能にする。
- 参考スコア(独自算出の注目度): 19.979621982792885
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we introduce EmoGist, a training-free, in-context learning method for performing visual emotion classification with LVLMs. The key intuition of our approach is that context-dependent definition of emotion labels could allow more accurate predictions of emotions, as the ways in which emotions manifest within images are highly context dependent and nuanced. EmoGist pre-generates multiple explanations of emotion labels, by analyzing the clusters of example images belonging to each category. At test time, we retrieve a version of explanation based on embedding similarity, and feed it to a fast VLM for classification. Through our experiments, we show that EmoGist allows up to 13 points improvement in micro F1 scores with the multi-label Memotion dataset, and up to 8 points in macro F1 in the multi-class FI dataset.
- Abstract(参考訳): 本稿では,LVLMを用いた視覚的感情分類を行うための,学習不要でコンテキスト内学習手法であるEmoGistを紹介する。
我々のアプローチの重要な直感は、感情ラベルの文脈依存的な定義は、画像内で感情が現れる方法が非常に文脈依存的でニュアンスが高いため、感情のより正確な予測を可能にすることである。
EmoGistは、各カテゴリに属するサンプル画像のクラスタを分析することで、感情ラベルの複数の説明を事前に生成する。
テスト時に、埋め込み類似性に基づいて説明版を検索し、分類のために高速なVLMに供給する。
実験の結果,EmoGistはマルチラベルのMemotionデータセットで最大13ポイント,マルチクラスFIデータセットでは最大8ポイントのマイクロF1スコアを達成できた。
関連論文リスト
- Emo Pillars: Knowledge Distillation to Support Fine-Grained Context-Aware and Context-Less Emotion Classification [56.974545305472304]
感情分析のためのほとんどのデータセットは、意見が表現された文脈を欠き、感情理解に不可欠であり、主にいくつかの感情カテゴリーによって制限される。
我々はLLMベースのデータ合成パイプラインを設計し、よりアクセスしやすい軽量BERT型エンコーダモデルのトレーニング例を生成するために、大規模モデルMistral-7bを利用する。
Emo Pillarsモデルは、GoEmotions、ISEAR、IEMOCAP、EmoContextといった特定のタスクに調整された場合、新しいドメインに対して高い適応性を示し、最初の3つでSOTAのパフォーマンスに達した。
論文 参考訳(メタデータ) (2025-04-23T16:23:17Z) - EmoSet: A Large-scale Visual Emotion Dataset with Rich Attributes [53.95428298229396]
リッチ属性を付加した最初の大規模視覚感情データセットであるEmoSetを紹介する。
EmoSetは合計330万枚の画像で構成され、そのうち118,102枚は人間のアノテーションによって慎重にラベル付けされている。
心理学的な研究によって動機付けられ、感情のカテゴリに加えて、各画像には記述可能な感情特性のセットが注釈付けされている。
論文 参考訳(メタデータ) (2023-07-16T06:42:46Z) - Leveraging Label Correlations in a Multi-label Setting: A Case Study in
Emotion [0.0]
マルチラベル感情認識モデルにおけるラベル相関を利用して感情検出を改善する。
単言語BERTモデルを用いたSemEval 2018 Task 1 E-cにおいて、スペイン語、英語、アラビア語で最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2022-10-28T02:27:18Z) - VISTANet: VIsual Spoken Textual Additive Net for Interpretable Multimodal Emotion Recognition [21.247650660908484]
本稿では、VISTANet(Visual Textual Additive Net)というマルチモーダル感情認識システムを提案する。
VISTANetは、早期と後期の融合のハイブリッドを用いて、画像、音声、テキストのモダリティから情報を融合する。
KAAP技術は、特定の感情のクラスを予測するために、各モダリティとそれに対応する特徴の寄与を計算する。
論文 参考訳(メタデータ) (2022-08-24T11:35:51Z) - A Circular-Structured Representation for Visual Emotion Distribution
Learning [82.89776298753661]
視覚的感情分布学習に先立つ知識を活用するために,身近な円形構造表現を提案する。
具体的には、まず感情圏を構築し、その内にある感情状態を統一する。
提案した感情圏では、各感情分布は3つの属性で定義される感情ベクトルで表される。
論文 参考訳(メタデータ) (2021-06-23T14:53:27Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
本稿では,きめ細かな感情の埋め込み表現を生成するための,新しいディープラーニングフレームワークを提案する。
本フレームワークは,コンテキスト型埋め込みエンコーダとマルチヘッド探索モデルを統合する。
本モデルは共感対話データセット上で評価され,32種類の感情を分類する最新結果を示す。
論文 参考訳(メタデータ) (2021-04-20T16:55:15Z) - SpanEmo: Casting Multi-label Emotion Classification as Span-prediction [15.41237087996244]
マルチラベル感情分類をスパンプレディションとした新しいモデル「SpanEmo」を提案する。
入力文中の複数の共存感情をモデル化することに焦点を当てた損失関数を導入する。
SemEval2018マルチラベル感情データを3つの言語セットで実験した結果,本手法の有効性が示された。
論文 参考訳(メタデータ) (2021-01-25T12:11:04Z) - EmoGraph: Capturing Emotion Correlations using Graph Networks [71.53159402053392]
グラフネットワークを通じて異なる感情間の依存関係をキャプチャするEmoGraphを提案する。
EmoGraphは特にマクロF1において、強いベースラインを上回ります。
キャプチャーされた感情相関は、シングルラベルの分類作業にも有用であることを示す実験である。
論文 参考訳(メタデータ) (2020-08-21T08:59:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。