Aneumo: A Large-Scale Multimodal Aneurysm Dataset with Computational Fluid Dynamics Simulations and Deep Learning Benchmarks
- URL: http://arxiv.org/abs/2505.14717v1
- Date: Mon, 19 May 2025 09:32:09 GMT
- Title: Aneumo: A Large-Scale Multimodal Aneurysm Dataset with Computational Fluid Dynamics Simulations and Deep Learning Benchmarks
- Authors: Xigui Li, Yuanye Zhou, Feiyang Xiao, Xin Guo, Chen Jiang, Tan Pan, Xingmeng Zhang, Cenyu Liu, Zeyun Miao, Jianchao Ge, Xiansheng Wang, Qimeng Wang, Yichi Zhang, Wenbo Zhang, Fengping Zhu, Limei Han, Yuan Qi, Chensen Lin, Yuan Cheng,
- Abstract summary: Intracranial aneurysms (IAs) are serious cerebrovascular lesions found in approximately 5% of the general population.<n>Their rupture may lead to high mortality.<n>Current methods for assessing IA risk focus on morphological and patient-specific factors, but the hemodynamic influences on IA development and rupture remain unclear.<n>This dataset aims to advance aneurysm research and promote data-driven approaches in biofluids, biomedical engineering, and clinical risk assessment.
- Score: 16.753219355754222
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Intracranial aneurysms (IAs) are serious cerebrovascular lesions found in approximately 5\% of the general population. Their rupture may lead to high mortality. Current methods for assessing IA risk focus on morphological and patient-specific factors, but the hemodynamic influences on IA development and rupture remain unclear. While accurate for hemodynamic studies, conventional computational fluid dynamics (CFD) methods are computationally intensive, hindering their deployment in large-scale or real-time clinical applications. To address this challenge, we curated a large-scale, high-fidelity aneurysm CFD dataset to facilitate the development of efficient machine learning algorithms for such applications. Based on 427 real aneurysm geometries, we synthesized 10,660 3D shapes via controlled deformation to simulate aneurysm evolution. The authenticity of these synthetic shapes was confirmed by neurosurgeons. CFD computations were performed on each shape under eight steady-state mass flow conditions, generating a total of 85,280 blood flow dynamics data covering key parameters. Furthermore, the dataset includes segmentation masks, which can support tasks that use images, point clouds or other multimodal data as input. Additionally, we introduced a benchmark for estimating flow parameters to assess current modeling methods. This dataset aims to advance aneurysm research and promote data-driven approaches in biofluids, biomedical engineering, and clinical risk assessment. The code and dataset are available at: https://github.com/Xigui-Li/Aneumo.
Related papers
- Adaptable Cardiovascular Disease Risk Prediction from Heterogeneous Data using Large Language Models [70.64969663547703]
AdaCVD is an adaptable CVD risk prediction framework built on large language models extensively fine-tuned on over half a million participants from the UK Biobank.<n>It addresses key clinical challenges across three dimensions: it flexibly incorporates comprehensive yet variable patient information; it seamlessly integrates both structured data and unstructured text; and it rapidly adapts to new patient populations using minimal additional data.
arXiv Detail & Related papers (2025-05-30T14:42:02Z) - Active Learning for Deep Learning-Based Hemodynamic Parameter Estimation [2.2742404315918923]
Hemodynamic parameters play an important role in diagnosis, prognosis, and treatment planning in cardiovascular diseases.<n>Deep learning methods have been adopted as a surrogate to rapidly estimate CFD outcomes.<n>We introduce an active learning framework to reduce the number of CFD simulations required for the training of surrogate models.
arXiv Detail & Related papers (2025-03-05T12:35:54Z) - Mesh-Informed Reduced Order Models for Aneurysm Rupture Risk Prediction [0.0]
We use computational fluid dynamics (CFD) to predict the risk of aortic aneurysm growth.<n>We exploit the natural graph structure of the mesh obtained by the Finite Volume (FV) discretization.<n>Our method confirms as a valid alternative that overcomes the curse of dimensionality.
arXiv Detail & Related papers (2024-10-04T09:39:15Z) - Inpainting Computational Fluid Dynamics with Deep Learning [8.397730500554047]
An effective fluid data completion method reduces the required number of sensors in a fluid dynamics experiment.
The ill-posed nature of the fluid data completion problem makes it prohibitively difficult to obtain a theoretical solution.
We employ the vector quantization technique to map both complete and incomplete fluid data spaces onto discrete-valued lower-dimensional representations.
arXiv Detail & Related papers (2024-02-27T03:44:55Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Simulation-based Inference for Cardiovascular Models [43.55219268578912]
We use simulation-based inference to solve the inverse problem of mapping waveforms back to plausible physiological parameters.<n>We perform an in-silico uncertainty analysis of five biomarkers of clinical interest.<n>We study the gap between in-vivo and in-silico with the MIMIC-III waveform database.
arXiv Detail & Related papers (2023-07-26T02:34:57Z) - Voxel2Hemodynamics: An End-to-end Deep Learning Method for Predicting
Coronary Artery Hemodynamics [24.8579242043367]
Local hemodynamic forces play an important role in determining the functional significance of coronary arterial stenosis.
We propose an end-to-end deep learning framework, which could predict the coronary artery hemodynamics from CCTA images.
arXiv Detail & Related papers (2023-05-30T15:12:52Z) - Geometric Deep Learning for the Assessment of Thrombosis Risk in the
Left Atrial Appendage [0.7956218230251954]
We develop a framework capable of predicting the endothelial cell activation potential (ECAP), linked to the risk of thrombosis, solely from the patient-specific LAA geometry.
The model was trained with a dataset combining 202 synthetic and 54 real LAA, predicting the ECAP distributions instantaneously, with an average mean absolute error of 0.563.
arXiv Detail & Related papers (2022-10-19T14:03:54Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
Dynamic Mode Decomposition (DMD) is a powerful data-driven method used to extract coherent schemes.
This paper proposes a strategy to enable DMD to extract from observations with different mesh topologies and dimensions.
arXiv Detail & Related papers (2021-04-28T22:14:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.