Leveraging Multivariate Long-Term History Representation for Time Series Forecasting
- URL: http://arxiv.org/abs/2505.14737v1
- Date: Tue, 20 May 2025 03:46:36 GMT
- Title: Leveraging Multivariate Long-Term History Representation for Time Series Forecasting
- Authors: Huiliang Zhang, Di Wu, Arnaud Zinflou, Stephane Dellacherie, Mouhamadou Makhtar Dione, Benoit Boulet,
- Abstract summary: We propose a framework called Long-term Multivariate Representation (LMHR) for MTS forecasting.<n>LMHR encodes the long-term history into segment-level contextual representations and reduces point-level noise.<n>It consistently improves prediction accuracy by 9.8% on the top 10% of rapidly changing patterns.
- Score: 6.661358934189792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multivariate Time Series (MTS) forecasting has a wide range of applications in both industry and academia. Recent advances in Spatial-Temporal Graph Neural Network (STGNN) have achieved great progress in modelling spatial-temporal correlations. Limited by computational complexity, most STGNNs for MTS forecasting focus primarily on short-term and local spatial-temporal dependencies. Although some recent methods attempt to incorporate univariate history into modeling, they still overlook crucial long-term spatial-temporal similarities and correlations across MTS, which are essential for accurate forecasting. To fill this gap, we propose a framework called the Long-term Multivariate History Representation (LMHR) Enhanced STGNN for MTS forecasting. Specifically, a Long-term History Encoder (LHEncoder) is adopted to effectively encode the long-term history into segment-level contextual representations and reduce point-level noise. A non-parametric Hierarchical Representation Retriever (HRetriever) is designed to include the spatial information in the long-term spatial-temporal dependency modelling and pick out the most valuable representations with no additional training. A Transformer-based Aggregator (TAggregator) selectively fuses the sparsely retrieved contextual representations based on the ranking positional embedding efficiently. Experimental results demonstrate that LMHR outperforms typical STGNNs by 10.72% on the average prediction horizons and state-of-the-art methods by 4.12% on several real-world datasets. Additionally, it consistently improves prediction accuracy by 9.8% on the top 10% of rapidly changing patterns across the datasets.
Related papers
- SpikeSTAG: Spatial-Temporal Forecasting via GNN-SNN Collaboration [16.754715227269525]
Spiking neural networks (SNNs) offer a distinctive approach for capturing the complexities of temporal data.<n>We introduce a brand new SNN architecture, which is among the first to seamlessly integrate graph structural learning with spike-based temporal processing.<n> Experiments show that our model surpasses the state-of-the-art SNN-based iSpikformer on all datasets.
arXiv Detail & Related papers (2025-08-04T05:17:52Z) - Multivariate Long-term Time Series Forecasting with Fourier Neural Filter [55.09326865401653]
We introduce FNF as the backbone and DBD as architecture to provide excellent learning capabilities and optimal learning pathways for spatial-temporal modeling.<n>We show that FNF unifies local time-domain and global frequency-domain information processing within a single backbone that extends naturally to spatial modeling.
arXiv Detail & Related papers (2025-06-10T18:40:20Z) - Nearest Neighbor Multivariate Time Series Forecasting [18.99215382890949]
We introduce a simple yet effective k-nearest neighbor MTS forecasting framework.<n>It forecasts with a nearest neighbor retrieval mechanism over a large datastore of cached series.<n>It has the ability to extract sparse distributed but similar patterns spanning over multivariables from the entire dataset.
arXiv Detail & Related papers (2025-05-16T18:41:33Z) - Test Time Learning for Time Series Forecasting [1.4605709124065924]
Test-Time Training (TTT) modules consistently outperform state-of-the-art models, including the Mamba-based TimeMachine.<n>Our results show significant improvements in Mean Squared Error (MSE) and Mean Absolute Error (MAE)<n>This work sets a new benchmark for time-series forecasting and lays the groundwork for future research in scalable, high-performance forecasting models.
arXiv Detail & Related papers (2024-09-21T04:40:08Z) - DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
Dynamic graph learning aims to uncover evolutionary laws in real-world systems.
We propose DyG-Mamba, a new continuous state space model for dynamic graph learning.
We show that DyG-Mamba achieves state-of-the-art performance on most datasets.
arXiv Detail & Related papers (2024-08-13T15:21:46Z) - SAGDFN: A Scalable Adaptive Graph Diffusion Forecasting Network for Multivariate Time Series Forecasting [19.111041921060366]
We present a scalable Adaptive Graph Diffusion Forecasting Network (SAGDFN) to capture complex spatial-temporal correlation.
SAGDFN is scalable to datasets of thousands of nodes without the need of prior knowledge of spatial correlation.
It achieves comparable performance with state-of-the-art baselines on one real-world dataset of 207 nodes and outperforms all state-of-the-art baselines by a significant margin on three real-world datasets of 2000 nodes.
arXiv Detail & Related papers (2024-06-18T05:19:51Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
We present PDETime, a novel LMTF model inspired by the principles of Neural PDE solvers.
Our experimentation across seven diversetemporal real-world LMTF datasets reveals that PDETime adapts effectively to the intrinsic nature of the data.
arXiv Detail & Related papers (2024-02-25T17:39:44Z) - Parsimony or Capability? Decomposition Delivers Both in Long-term Time Series Forecasting [46.63798583414426]
Long-term time series forecasting (LTSF) represents a critical frontier in time series analysis.
Our study demonstrates, through both analytical and empirical evidence, that decomposition is key to containing excessive model inflation.
Remarkably, by tailoring decomposition to the intrinsic dynamics of time series data, our proposed model outperforms existing benchmarks.
arXiv Detail & Related papers (2024-01-22T13:15:40Z) - Unified Long-Term Time-Series Forecasting Benchmark [0.6526824510982802]
We present a comprehensive dataset designed explicitly for long-term time-series forecasting.
We incorporate a collection of datasets obtained from diverse, dynamic systems and real-life records.
To determine the most effective model in diverse scenarios, we conduct an extensive benchmarking analysis using classical and state-of-the-art models.
Our findings reveal intriguing performance comparisons among these models, highlighting the dataset-dependent nature of model effectiveness.
arXiv Detail & Related papers (2023-09-27T18:59:00Z) - Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data [50.84488941336865]
We propose a novel method called Fully- Spatial-Temporal Graph Neural Network (FC-STGNN)
For graph construction, we design a decay graph to connect sensors across all timestamps based on their temporal distances.
For graph convolution, we devise FC graph convolution with a moving-pooling GNN layer to effectively capture the ST dependencies for learning effective representations.
arXiv Detail & Related papers (2023-09-11T08:44:07Z) - Pre-training Enhanced Spatial-temporal Graph Neural Network for
Multivariate Time Series Forecasting [13.441945545904504]
We propose a novel framework, in which STGNN is Enhanced by a scalable time series Pre-training model (STEP)
Specifically, we design a pre-training model to efficiently learn temporal patterns from very long-term history time series.
Our framework is capable of significantly enhancing downstream STGNNs, and our pre-training model aptly captures temporal patterns.
arXiv Detail & Related papers (2022-06-18T04:24:36Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.