Beyond Pairwise Plasticity: Group-Level Spike Synchrony Facilitates Efficient Learning in Spiking Neural Networks
- URL: http://arxiv.org/abs/2505.14841v1
- Date: Mon, 14 Apr 2025 04:01:40 GMT
- Title: Beyond Pairwise Plasticity: Group-Level Spike Synchrony Facilitates Efficient Learning in Spiking Neural Networks
- Authors: Yuchen Tian, Assel Kembay, Nhan Duy Truong, Jason K. Eshraghian, Omid Kavehei,
- Abstract summary: We introduce a spike-synchrony-dependent plasticity (SSDP) rule that adjusts synaptic weights based on the degree of coordinated firing among neurons.<n>STDP supports stable and scalable learning by encouraging neurons to form coherent activity patterns.<n>STDP operates in a fully event-driven manner and incurs minimal computational cost.
- Score: 4.8343143600505245
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Brain networks rely on precise spike timing and coordinated activity to support robust and energy-efficient learning. Inspired by these principles, spiking neural networks (SNNs) are widely regarded as promising candidates for low-power, event-driven computing. However, most biologically-inspired learning rules employed in SNNs, including spike-timing-dependent plasticity (STDP), rely on isolated spike pairs and lack sensitivity to population-level activity. This limits their stability and generalization, particularly in noisy and fast-changing environments. Motivated by biological observations that neural synchrony plays a central role in learning and memory, we introduce a spike-synchrony-dependent plasticity (SSDP) rule that adjusts synaptic weights based on the degree of coordinated firing among neurons. SSDP supports stable and scalable learning by encouraging neurons to form coherent activity patterns. One prominent outcome is a sudden transition from unstable to stable dynamics during training, suggesting that synchrony may drive convergence toward equilibrium firing regimes. We demonstrate SSDP's effectiveness across multiple network types, from minimal-layer models to spiking ResNets and SNN-Transformer. To our knowledge, this is the first application of a synaptic plasticity mechanism in a spiking transformer. SSDP operates in a fully event-driven manner and incurs minimal computational cost, making it well-suited for neuromorphic deployment. In this approach, local synaptic modifications are associated with the collective dynamics of neural networks, resulting in a learning strategy that adheres to biological principles while maintaining practical efficiency, these findings position SSDP as a general-purpose optimization strategy for SNNs, while offering new insights into population-based learning mechanisms in the brain.
Related papers
- Extending Spike-Timing Dependent Plasticity to Learning Synaptic Delays [50.45313162890861]
We introduce a novel learning rule for simultaneously learning synaptic connection strengths and delays.<n>We validate our approach by extending a widely-used SNN model for classification trained with unsupervised learning.<n>Results demonstrate that our proposed method consistently achieves superior performance across a variety of test scenarios.
arXiv Detail & Related papers (2025-06-17T21:24:58Z) - Neural Models of Task Adaptation: A Tutorial on Spiking Networks for Executive Control [0.0]
This tutorial presents a step-by-step approach to constructing a spiking neural network (SNN) that simulates task-switching dynamics.<n>The model incorporates biologically realistic features, including lateral inhibition, adaptive synaptic weights, and precise parameterization within physiologically relevant ranges.<n>By following this tutorial, researchers can develop and extend biologically inspired SNN models for studying cognitive processes and neural adaptation.
arXiv Detail & Related papers (2025-03-05T00:44:34Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
We demonstrate memristive nano-devices based on SrTiO3 that inherently emulate all these synaptic functions.
These memristors operate in a non-filamentary, low conductance regime, which enables stable and energy efficient operation.
arXiv Detail & Related papers (2024-02-26T15:01:54Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Developmental Plasticity-inspired Adaptive Pruning for Deep Spiking and Artificial Neural Networks [11.730984231143108]
Developmental plasticity plays prominent role in shaping the brain's structure during ongoing learning.
Existing network compression methods for deep artificial neural networks (ANNs) and spiking neural networks (SNNs) draw little inspiration from brain's developmental plasticity mechanisms.
This paper proposes a developmental plasticity-inspired adaptive pruning (DPAP) method, with inspiration from the adaptive developmental pruning of dendritic spines, synapses, and neurons.
arXiv Detail & Related papers (2022-11-23T05:26:51Z) - Modeling Associative Plasticity between Synapses to Enhance Learning of
Spiking Neural Networks [4.736525128377909]
Spiking Neural Networks (SNNs) are the third generation of artificial neural networks that enable energy-efficient implementation on neuromorphic hardware.
We propose a robust and effective learning mechanism by modeling the associative plasticity between synapses.
Our approaches achieve superior performance on static and state-of-the-art neuromorphic datasets.
arXiv Detail & Related papers (2022-07-24T06:12:23Z) - Increasing Liquid State Machine Performance with Edge-of-Chaos Dynamics
Organized by Astrocyte-modulated Plasticity [0.0]
Liquid state machine (LSM) tunes internal weights without backpropagation of gradients.
Recent findings suggest that astrocytes, a long-neglected non-neuronal brain cell, modulate synaptic plasticity and brain dynamics.
We propose the neuron-astrocyte liquid state machine (NALSM) that addresses under-performance through self-organized near-critical dynamics.
arXiv Detail & Related papers (2021-10-26T23:04:40Z) - SpikePropamine: Differentiable Plasticity in Spiking Neural Networks [0.0]
We introduce a framework for learning the dynamics of synaptic plasticity and neuromodulated synaptic plasticity in Spiking Neural Networks (SNNs)
We show that SNNs augmented with differentiable plasticity are sufficient for solving a set of challenging temporal learning tasks.
These networks are also shown to be capable of producing locomotion on a high-dimensional robotic learning task.
arXiv Detail & Related papers (2021-06-04T19:29:07Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
This paper presents the Membrane Potential and Activation Threshold Homeostasis (MPATH) neuron model.
The model allows neurons to maintain a form of dynamic equilibrium by automatically regulating their activity when presented with input.
Experiments demonstrate the model's ability to adapt to and continually learn from its input.
arXiv Detail & Related papers (2021-04-22T04:01:32Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.