論文の概要: Pre-validation Revisited
- arxiv url: http://arxiv.org/abs/2505.14985v1
- Date: Wed, 21 May 2025 00:20:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 15:42:58.797352
- Title: Pre-validation Revisited
- Title(参考訳): プレバリデーション再考
- Authors: Jing Shang, Sourav Chatterjee, Trevor Hastie, Robert Tibshirani,
- Abstract要約: 我々は,事前検証手順を再検討し,2つの特徴集合に対して独立性を仮定せずに問題定式化を拡張した。
シミュレーションによる予測,推測,誤差推定におけるプレバリデーションの特性と利点について検討した。
- 参考スコア(独自算出の注目度): 79.92204034170092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pre-validation is a way to build prediction model with two datasets of significantly different feature dimensions. Previous work showed that the asymptotic distribution of test statistic for the pre-validated predictor deviated from a standard Normal, hence will lead to issues in hypothesis tests. In this paper, we revisited the pre-validation procedure and extended the problem formulation without any independence assumption on the two feature sets. We proposed not only an analytical distribution of the test statistics for pre-validated predictor under certain models, but also a generic bootstrap procedure to conduct inference. We showed properties and benefits of pre-validation in prediction, inference and error estimation by simulation and various applications, including analysis of a breast cancer study and a synthetic GWAS example.
- Abstract(参考訳): プレバリデーション(Pre-validation)は、異なる特徴次元の2つのデータセットで予測モデルを構築する方法である。
従来の研究では、標準正規値から逸脱した事前検証された予測値に対するテスト統計量の漸近分布が仮説テストの問題を招いた。
本稿では,事前検証手順を再検討し,2つの特徴集合に対する独立性の仮定を伴わずに問題定式化を拡張した。
提案手法は, あるモデル下での事前検証予測値の解析的分布だけでなく, 推論を行うための一般的なブートストラップ手順も提案した。
シミュレーションによる予測,推測,誤差推定におけるプレバリデーションの特性と有用性を示し,乳がん研究や合成GWASの例など,様々な応用について検討した。
関連論文リスト
- Predictive Performance Test based on the Exhaustive Nested Cross-Validation for High-dimensional data [7.62566998854384]
クロスバリデーションは、予測誤差の推定、正規化パラメータのチューニング、最も適切な予測モデルの選択など、いくつかのタスクに使用される。
K-foldクロスバリデーションは一般的なCV法であるが、その制限はリスク推定がデータの分割に大きく依存していることである。
本研究は, 完全ネスト型クロスバリデーションに基づく新たな予測性能試験と有効信頼区間を提案する。
論文 参考訳(メタデータ) (2024-08-06T12:28:16Z) - Uncertainty-Calibrated Test-Time Model Adaptation without Forgetting [55.17761802332469]
テスト時間適応(TTA)は、与えられたモデルw.r.t.を任意のテストサンプルに適用することにより、トレーニングデータとテストデータの間の潜在的な分散シフトに取り組むことを目指している。
事前の手法は各テストサンプルに対してバックプロパゲーションを実行するため、多くのアプリケーションに対して許容できない最適化コストがかかる。
本稿では, 有効サンプル選択基準を策定し, 信頼性および非冗長なサンプルを同定する, 効率的なアンチフォッティングテスト時間適応法を提案する。
論文 参考訳(メタデータ) (2024-03-18T05:49:45Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
本研究では,所定の点における条件分散の値に関する仮説を検証し,留置手順を開発する。
既存の手法とは異なり、提案手法は分散自体の値だけでなく、対応する分散予測器の不確実性についても考慮することができる。
論文 参考訳(メタデータ) (2023-09-28T13:04:11Z) - Private Sequential Hypothesis Testing for Statisticians: Privacy, Error
Rates, and Sample Size [24.149533870085175]
我々は、Renyi差分プライバシーとして知られる、差分プライバシーのわずかな変種の下で、シーケンシャル仮説テスト問題を研究する。
我々は,Wald's Sequential Probability Ratio Test (SPRT)に基づく新たなプライベートアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-04-10T04:15:50Z) - Conformal Prediction Under Feedback Covariate Shift for Biomolecular Design [56.86533144730384]
本稿では,トレーニングデータとテストデータが統計的に依存した環境での予測不確実性を定量化する手法を提案する。
モチベーション・ユースケースとして,本手法が設計したタンパク質の適合性予測の不確かさを定量化する方法を実データで示す。
論文 参考訳(メタデータ) (2022-02-08T02:59:12Z) - Statistical quantification of confounding bias in predictive modelling [0.0]
未確立モデルと完全構築モデルのnull仮説を探索する部分的および完全共創テストを提案する。
このテストは、非正規および非線形依存の予測であっても、I型エラーと高い統計的パワーに対して厳格な制御を提供する。
論文 参考訳(メタデータ) (2021-11-01T10:35:24Z) - Balance-Subsampled Stable Prediction [55.13512328954456]
本稿では, 分数分解設計理論に基づく新しいバランスサブサンプル安定予測法を提案する。
設計理論解析により,提案手法は分布シフトによって誘導される予測器間の共起効果を低減できることを示した。
合成および実世界の両方のデータセットに関する数値実験により、BSSPアルゴリズムは未知のテストデータ間で安定した予測を行うためのベースライン法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2020-06-08T07:01:38Z) - Achieving Equalized Odds by Resampling Sensitive Attributes [13.114114427206678]
等価性の概念をほぼ満足する予測モデルを学習するためのフレキシブルなフレームワークを提案する。
この微分可能な関数は、モデルパラメータを等化奇数に向けて駆動するペナルティとして使用される。
本研究は,予測規則が本性質に反するか否かを検出するための公式な仮説テストを開発する。
論文 参考訳(メタデータ) (2020-06-08T00:18:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。