論文の概要: Beyond Node Attention: Multi-Scale Harmonic Encoding for Feature-Wise Graph Message Passing
- arxiv url: http://arxiv.org/abs/2505.15015v1
- Date: Wed, 21 May 2025 01:35:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 15:42:58.811858
- Title: Beyond Node Attention: Multi-Scale Harmonic Encoding for Feature-Wise Graph Message Passing
- Title(参考訳): ノード注意を超えて - フィーチャーワイズグラフメッセージパッシングのためのマルチスケールハーモニックエンコーディング
- Authors: Longlong Li, Cunquan Qu, Guanghui Wang,
- Abstract要約: 本稿では,MSH-GNN(Multi-Scale Harmonic Graph Neural Network)を提案する。
各ノードに対して、MSH-GNNは、ターゲットノード自身の表現によって決定される周波数依存性の方向に対して、隣の機能を動的に投影する。
周波数認識型アテンションプーリング機構を導入し、読み出し中にスペクトルおよび構造的に有意なノードを強調する。
- 参考スコア(独自算出の注目度): 6.081915850400204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional Graph Neural Networks (GNNs) aggregate neighbor embeddings as holistic vectors, lacking the ability to identify fine-grained, direction-specific feature relevance. We propose MSH-GNN (Multi-Scale Harmonic Graph Neural Network), a novel architecture that performs feature-wise adaptive message passing through node-specific harmonic projections. For each node, MSH-GNN dynamically projects neighbor features onto frequency-sensitive directions determined by the target node's own representation. These projections are further modulated using learnable sinusoidal encodings at multiple frequencies, enabling the model to capture both smooth and oscillatory structural patterns across scales. A frequency-aware attention pooling mechanism is introduced to emphasize spectrally and structurally salient nodes during readout. Theoretically, we prove that MSH-GNN approximates shift-invariant kernels and matches the expressive power of the 1-Weisfeiler-Lehman (1-WL) test. Empirically, MSH-GNN consistently outperforms state-of-the-art models on a wide range of graph and node classification tasks. Furthermore, in challenging classification settings involving joint variations in graph topology and spectral frequency, MSH-GNN excels at capturing structural asymmetries and high-frequency modulations, enabling more accurate graph discrimination.
- Abstract(参考訳): 従来のグラフニューラルネットワーク(GNN)は、隣接する埋め込みを全体的ベクトルとして集約する。
本稿では,MSH-GNN(Multi-Scale Harmonic Graph Neural Network)を提案する。
各ノードに対して、MSH-GNNは、ターゲットノード自身の表現によって決定される周波数依存性の方向に対して、隣の機能を動的に投影する。
これらのプロジェクションは学習可能な正弦波符号化を用いて複数の周波数で変調され、モデルがスケールのスムーズな構造パターンと振動的な構造パターンの両方を捉えることができる。
周波数認識型アテンションプーリング機構を導入し、読み出し中にスペクトルおよび構造的に有意なノードを強調する。
理論的には、MSH-GNNがシフト不変カーネルを近似し、1-Weisfeiler-Lehman (1-WL) テストの表現力と一致することを示す。
経験的に、MSH-GNNは、幅広いグラフとノード分類タスクにおける最先端モデルよりも一貫して優れている。
さらに、グラフトポロジとスペクトル周波数のジョイント変動を含む挑戦的な分類設定では、MSH-GNNは構造的非対称性と高周波変調を捕捉し、より正確なグラフ識別を可能にする。
関連論文リスト
- Higher-Order GNNs Meet Efficiency: Sparse Sobolev Graph Neural Networks [6.080095317098909]
グラフニューラルネットワーク(GNN)は,グラフ内のノード間の関係をモデル化する上で,非常に有望であることを示す。
これまでの研究では、主にグラフ内の高次隣人からの情報を活用しようと試みてきた。
我々は基本的な観察を行い、ラプラシア行列の正則とアダマールの力はスペクトルでも同様に振る舞う。
グラフ信号のスパースなソボレフノルムに基づく新しいグラフ畳み込み演算子を提案する。
論文 参考訳(メタデータ) (2024-11-07T09:53:11Z) - Towards Better Generalization with Flexible Representation of
Multi-Module Graph Neural Networks [0.27195102129094995]
ランダムグラフ生成器を用いて,グラフサイズと構造特性がGNNの予測性能に与える影響について検討する。
本稿では,GNNが未知のグラフに一般化できるかどうかを決定する上で,平均ノード次数が重要な特徴であることを示す。
集約された入力に対して単一の正準非線形変換を一般化することにより、ネットワークが新しいグラフに柔軟に対応可能なマルチモジュールGNNフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-14T12:13:59Z) - Learnable Filters for Geometric Scattering Modules [64.03877398967282]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2022-08-15T22:30:07Z) - Adaptive Kernel Graph Neural Network [21.863238974404474]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの表現学習において大きな成功を収めている。
本稿では,AKGNN(Adaptive Kernel Graph Neural Network)という新しいフレームワークを提案する。
AKGNNは、最初の試みで最適なグラフカーネルに統一的に適応することを学ぶ。
評価されたベンチマークデータセットで実験を行い、提案したAKGNNの優れた性能を示す有望な結果を得た。
論文 参考訳(メタデータ) (2021-12-08T20:23:58Z) - VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using
Vector Quantization [70.8567058758375]
VQ-GNNは、Vector Quantization(VQ)を使用して、パフォーマンスを損なうことなく、畳み込みベースのGNNをスケールアップするための普遍的なフレームワークである。
我々のフレームワークは,グラフ畳み込み行列の低ランク版と組み合わせた量子化表現を用いて,GNNの「隣の爆発」問題を回避する。
論文 参考訳(メタデータ) (2021-10-27T11:48:50Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
本稿では、入力グラフと下流タスクに基づいて最適な曲率を適応的に学習する適応曲率探索ハイパーボリックグラフニューラルネットワークACE-HGNNを提案する。
複数の実世界のグラフデータセットの実験は、競争性能と優れた一般化能力を備えたモデル品質において、顕著で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-10-15T07:18:57Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2020-10-06T01:20:27Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Permutation-equivariant and Proximity-aware Graph Neural Networks with
Stochastic Message Passing [88.30867628592112]
グラフニューラルネットワーク(GNN)は、グラフ上の新たな機械学習モデルである。
置換等価性と近接認識性は、GNNにとって非常に望ましい2つの重要な特性である。
既存のGNNは、主にメッセージパッシング機構に基づいており、同時に2つの特性を保存できないことを示す。
ノードの近さを保つため,既存のGNNをノード表現で拡張する。
論文 参考訳(メタデータ) (2020-09-05T16:46:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。