論文の概要: Restricted Spectral Gap Decomposition for Simulated Tempering Targeting Mixture Distributions
- arxiv url: http://arxiv.org/abs/2505.15059v1
- Date: Wed, 21 May 2025 03:28:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 15:42:58.839791
- Title: Restricted Spectral Gap Decomposition for Simulated Tempering Targeting Mixture Distributions
- Title(参考訳): 模擬加熱ターゲット混合分布の制限スペクトルギャップ分解
- Authors: Jhanvi Garg, Krishna Balasubramanian, Quan Zhou,
- Abstract要約: 模擬テンパリングと任意の局所連鎖モンテカルロサンプリング器を組み合わせることを考える。
混合分布からサンプリングするアルゴリズムの制限スペクトルギャップを下限とした新しい分解定理を提案する。
- 参考スコア(独自算出の注目度): 3.7577421880330535
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Simulated tempering is a widely used strategy for sampling from multimodal distributions. In this paper, we consider simulated tempering combined with an arbitrary local Markov chain Monte Carlo sampler and present a new decomposition theorem that provides a lower bound on the restricted spectral gap of the algorithm for sampling from mixture distributions. By working with the restricted spectral gap, the applicability of our results is extended to broader settings such as when the usual spectral gap is difficult to bound or becomes degenerate. We demonstrate the application of our theoretical results by analyzing simulated tempering combined with random walk Metropolis--Hastings for sampling from mixtures of Gaussian distributions. We show that in fixed-dimensional settings, the algorithm's complexity scales polynomially with the separation between modes and logarithmically with $1/\varepsilon$, where $\varepsilon$ is the target accuracy in total variation distance.
- Abstract(参考訳): シミュレート・テンパリングはマルチモーダル分布からのサンプリングに広く用いられている手法である。
本稿では、任意の局所マルコフ連鎖モンテカルロサンプリング器と組み合わせた模擬テンパリングについて検討し、混合分布からサンプリングするアルゴリズムの制限スペクトルギャップに下限を与える新しい分解定理を提案する。
スペクトルギャップを制限することで、通常のスペクトルギャップが束縛されにくい場合や縮退しにくい場合など、我々の結果の適用性はより広い設定に拡張される。
本研究では, 模擬テンパリングとランダムウォークメトロポリスの併用による理論結果の応用を実証し, ガウス分布の混合から抽出する手法を提案する。
固定次元設定では、アルゴリズムの複雑さはモードと対数的に1/\varepsilon$で多項式的にスケールし、ここでは$\varepsilon$が全変動距離の目標精度であることを示す。
関連論文リスト
- Enhancing Gradient-based Discrete Sampling via Parallel Tempering [8.195708231156546]
勾配に基づく離散サンプリング器は、高次元のマルチモーダル離散分布において局所的なミニマに閉じ込められやすい。
我々は、並列テンパリング(レプリカ交換としても知られる)と離散ランゲヴィン提案を組み合わせた離散ランゲヴィン提案を開発する。
我々は,本アルゴリズムが非漸近的に目標エネルギーに収束し,単一鎖よりも高速な混合を示すことを示す。
論文 参考訳(メタデータ) (2025-02-26T15:51:15Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
一般のスコアミスマッチ拡散サンプリング器に対する明示的な次元依存性を持つ最初の性能保証を示す。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - Diffusive Gibbs Sampling [40.1197715949575]
本稿では,ディフューシブギブズサンプリング(Diffusive Gibbs Sampling, DiGS)を提案する。
DiGSは拡散モデルにおける最近の発展を統合し、ガウスの畳み込みを利用して補助雑音分布を生成する。
新規なメトロポリス・ウィスティン・ギブス法は, サンプリング工程における混合性を高めるために提案されている。
論文 参考訳(メタデータ) (2024-02-05T13:47:41Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Langevin Quasi-Monte Carlo [6.146093081175471]
ランゲヴィン・モンテカルロ(LMC)とその勾配バージョンは複雑な高次元分布からサンプリングする強力なアルゴリズムである。
準ランダムサンプルを用いてLCCの推定誤差を低減できることを示す。
論文 参考訳(メタデータ) (2023-09-22T07:15:18Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Smpling (AIS)は、抽出可能な分布から重み付けされたサンプルを合成する。
本稿では,alpha$-divergencesに対する定数レートAISアルゴリズムとその効率的な実装を提案する。
論文 参考訳(メタデータ) (2023-06-27T08:15:28Z) - Mean-Square Analysis of Discretized It\^o Diffusions for Heavy-tailed
Sampling [17.415391025051434]
重み付きポインカーの不等式に関連する伊藤拡散の自然クラスを離散化することにより、重み付き分布のクラスからのサンプリングの複雑さを分析する。
平均二乗解析に基づいて、ワッサーシュタイン2計量のターゲット分布に近い分布が$epsilon$のサンプルを得るための反復複雑性を確立する。
論文 参考訳(メタデータ) (2023-03-01T15:16:03Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
ハイブリッドモンテカルロ(Hybrid Monte Carlo)は、複素連続分布からサンプリングする強力なマルコフ連鎖モンテカルロ法である。
本稿では,SurVAEフローを用いたモンテカルロ法の拡張に基づく新しい手法を提案する。
本稿では,統計学,計算物理学,機械学習など,様々な分野におけるアルゴリズムの有効性を実証し,代替アルゴリズムと比較した改良点を考察する。
論文 参考訳(メタデータ) (2021-02-04T02:21:08Z) - Generative Modeling with Denoising Auto-Encoders and Langevin Sampling [88.83704353627554]
DAEとDSMの両方がスムーズな人口密度のスコアを推定することを示した。
次に、この結果をarXiv:1907.05600のホモトピー法に適用し、その経験的成功を理論的に正当化する。
論文 参考訳(メタデータ) (2020-01-31T23:50:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。