From Pixels to Images: Deep Learning Advances in Remote Sensing Image Semantic Segmentation
- URL: http://arxiv.org/abs/2505.15147v1
- Date: Wed, 21 May 2025 06:02:57 GMT
- Title: From Pixels to Images: Deep Learning Advances in Remote Sensing Image Semantic Segmentation
- Authors: Quanwei Liu, Tao Huang, Yanni Dong, Jiaqi Yang, Wei Xiang,
- Abstract summary: Remote sensing images (RSIs) capture both natural and human-induced changes on the Earth's surface.<n>Semantic segmentation (SS) of RSIs enables the fine-grained interpretation of surface features.<n>Deep learning (DL) has emerged as a transformative approach, enabling substantial advances in remote sensing image semantic segmentation.
- Score: 14.556499156486066
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Remote sensing images (RSIs) capture both natural and human-induced changes on the Earth's surface, serving as essential data for environmental monitoring, urban planning, and resource management. Semantic segmentation (SS) of RSIs enables the fine-grained interpretation of surface features, making it a critical task in remote sensing analysis. With the increasing diversity and volume of RSIs collected by sensors on various platforms, traditional processing methods struggle to maintain efficiency and accuracy. In response, deep learning (DL) has emerged as a transformative approach, enabling substantial advances in remote sensing image semantic segmentation (RSISS) by automating feature extraction and improving segmentation accuracy across diverse modalities. This paper revisits the evolution of DL-based RSISS by categorizing existing approaches into four stages: the early pixel-based methods, the prevailing patch-based and tile-based techniques, and the emerging image-based strategies enabled by foundation models. We analyze these developments from the perspective of feature extraction and learning strategies, revealing the field's progression from pixel-level to tile-level and from unimodal to multimodal segmentation. Furthermore, we conduct a comprehensive evaluation of nearly 40 advanced techniques on a unified dataset to quantitatively characterize their performance and applicability. This review offers a holistic view of DL-based SS for RS, highlighting key advancements, comparative insights, and open challenges to guide future research.
Related papers
- DiffRIS: Enhancing Referring Remote Sensing Image Segmentation with Pre-trained Text-to-Image Diffusion Models [9.109484087832058]
DiffRIS is a novel framework that harnesses the semantic understanding capabilities of pre-trained text-to-image diffusion models for RRSIS tasks.<n>Our framework introduces two key innovations: a context perception adapter (CP-adapter) and a cross-modal reasoning decoder (PCMRD)
arXiv Detail & Related papers (2025-06-23T02:38:56Z) - SeG-SR: Integrating Semantic Knowledge into Remote Sensing Image Super-Resolution via Vision-Language Model [23.383837540690823]
High-resolution (HR) remote sensing imagery plays a vital role in a wide range of applications, including urban planning and environmental monitoring.<n>Due to limitations in sensors and data transmission links, the images acquired in practice often suffer from resolution degradation.<n>Remote Sensing Image Super-Resolution (RSISR) aims to reconstruct HR images from low-resolution (LR) inputs, providing a cost-effective and efficient alternative to direct HR image acquisition.
arXiv Detail & Related papers (2025-05-29T02:38:34Z) - A Sensor Agnostic Domain Generalization Framework for Leveraging Geospatial Foundation Models: Enhancing Semantic Segmentation viaSynergistic Pseudo-Labeling and Generative Learning [5.299218284699214]
High-performance segmentation models are challenged by annotation scarcity and variability across sensors, illumination, and geography.<n>This paper introduces a domain generalization approach to leveraging emerging geospatial foundation models by combining soft-alignment pseudo-labeling with source-to-target generative pre-training.<n> Experiments with hyperspectral and multispectral remote sensing datasets confirm our method's effectiveness in enhancing adaptability and segmentation.
arXiv Detail & Related papers (2025-05-02T19:52:02Z) - Improving Neural Surface Reconstruction with Feature Priors from Multi-View Image [87.00660347447494]
Recent advancements in Neural Surface Reconstruction (NSR) have significantly improved multi-view reconstruction when coupled with volume rendering.
We propose an investigation into feature-level consistent loss, aiming to harness valuable feature priors from diverse pretext visual tasks.
Our results, analyzed on DTU and EPFL, reveal that feature priors from image matching and multi-view stereo datasets outperform other pretext tasks.
arXiv Detail & Related papers (2024-08-04T16:09:46Z) - SAFE: a SAR Feature Extractor based on self-supervised learning and masked Siamese ViTs [5.961207817077044]
We propose a novel self-supervised learning framework based on masked Siamese Vision Transformers to create a General SAR Feature Extractor coined SAFE.
Our method leverages contrastive learning principles to train a model on unlabeled SAR data, extracting robust and generalizable features.
We introduce tailored data augmentation techniques specific to SAR imagery, such as sub-aperture decomposition and despeckling.
Our network competes with or surpasses other state-of-the-art methods in few-shot classification and segmentation tasks, even without being trained on the sensors used for the evaluation.
arXiv Detail & Related papers (2024-06-30T23:11:20Z) - Scaling Efficient Masked Image Modeling on Large Remote Sensing Dataset [66.15872913664407]
We present a new pre-training pipeline for RS models, featuring the creation of a large-scale RS dataset and an efficient MIM approach.<n>We curated a high-quality dataset named OpticalRS-13M by collecting publicly available RS datasets and processing them through exclusion, slicing, and deduplication.<n>Experiments demonstrate that OpticalRS-13M significantly improves classification, detection, and segmentation performance, while SelectiveMAE increases training efficiency over 2 times.
arXiv Detail & Related papers (2024-06-17T15:41:57Z) - A$^{2}$-MAE: A spatial-temporal-spectral unified remote sensing pre-training method based on anchor-aware masked autoencoder [26.81539884309151]
Remote sensing (RS) data provide Earth observations across multiple dimensions, encompassing critical spatial, temporal, and spectral information.
Despite various pre-training methods tailored to the characteristics of RS data, a key limitation persists: the inability to effectively integrate spatial, temporal, and spectral information within a single unified model.
We propose an Anchor-Aware Masked AutoEncoder method (A$2$-MAE), leveraging intrinsic complementary information from the different kinds of images and geo-information to reconstruct the masked patches during the pre-training phase.
arXiv Detail & Related papers (2024-06-12T11:02:15Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
We propose a novel SR method called MPF-Net that leverages multiple perceptual features of input images.
Our method incorporates a Multi-Perception Feature Extraction (MPFE) module to extract diverse perceptual information.
We also introduce a contrastive regularization term (CR) that improves the model's learning capability.
arXiv Detail & Related papers (2023-05-26T07:35:49Z) - Remote Sensing Image Classification using Transfer Learning and
Attention Based Deep Neural Network [59.86658316440461]
We propose a deep learning based framework for RSISC, which makes use of the transfer learning technique and multihead attention scheme.
The proposed deep learning framework is evaluated on the benchmark NWPU-RESISC45 dataset and achieves the best classification accuracy of 94.7%.
arXiv Detail & Related papers (2022-06-20T10:05:38Z) - Real-World Image Super-Resolution by Exclusionary Dual-Learning [98.36096041099906]
Real-world image super-resolution is a practical image restoration problem that aims to obtain high-quality images from in-the-wild input.
Deep learning-based methods have achieved promising restoration quality on real-world image super-resolution datasets.
We propose Real-World image Super-Resolution by Exclusionary Dual-Learning (RWSR-EDL) to address the feature diversity in perceptual- and L1-based cooperative learning.
arXiv Detail & Related papers (2022-06-06T13:28:15Z) - Towards High Performance Human Keypoint Detection [87.1034745775229]
We find that context information plays an important role in reasoning human body configuration and invisible keypoints.
Inspired by this, we propose a cascaded context mixer ( CCM) which efficiently integrates spatial and channel context information.
To maximize CCM's representation capability, we develop a hard-negative person detection mining strategy and a joint-training strategy.
We present several sub-pixel refinement techniques for postprocessing keypoint predictions to improve detection accuracy.
arXiv Detail & Related papers (2020-02-03T02:24:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.