論文の概要: Zero-Shot Gaze-based Volumetric Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2505.15256v1
- Date: Wed, 21 May 2025 08:34:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 15:42:59.311826
- Title: Zero-Shot Gaze-based Volumetric Medical Image Segmentation
- Title(参考訳): ゼロショット・ゲイズを用いたボリューム医用画像分割
- Authors: Tatyana Shmykova, Leila Khaertdinova, Ilya Pershin,
- Abstract要約: 対話型セグメンテーションのための新しい情報モダリティとして視線を導入した。
我々は、SAM-2とMedSAM-2を用いた視線情報を用いた視線データと実視線データの両方を用いて、視線情報を用いた視線情報の有効性を評価する。
- 参考スコア(独自算出の注目度): 0.40964539027092917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate segmentation of anatomical structures in volumetric medical images is crucial for clinical applications, including disease monitoring and cancer treatment planning. Contemporary interactive segmentation models, such as Segment Anything Model 2 (SAM-2) and its medical variant (MedSAM-2), rely on manually provided prompts like bounding boxes and mouse clicks. In this study, we introduce eye gaze as a novel informational modality for interactive segmentation, marking the application of eye-tracking for 3D medical image segmentation. We evaluate the performance of using gaze-based prompts with SAM-2 and MedSAM-2 using both synthetic and real gaze data. Compared to bounding boxes, gaze-based prompts offer a time-efficient interaction approach with slightly lower segmentation quality. Our findings highlight the potential of using gaze as a complementary input modality for interactive 3D medical image segmentation.
- Abstract(参考訳): 疾患のモニタリングやがん治療計画などの臨床応用には, 体積医学画像における解剖学的構造の正確なセグメンテーションが不可欠である。
Segment Anything Model 2 (SAM-2) やMedSAM-2 (MedSAM-2) のような現代のインタラクティブセグメンテーションモデルは、バウンディングボックスやマウスクリックのような手動で提供されるプロンプトに依存している。
本研究では,視線をインタラクティブなセグメンテーションのための新しい情報モダリティとして導入し,医用3次元画像セグメンテーションにおけるアイトラッキングの応用を示す。
我々は、SAM-2とMedSAM-2を用いた視線情報を用いた視線データと実視線データの両方を用いて、視線情報を用いた視線情報の有効性を評価する。
境界ボックスと比較して、視線ベースのプロンプトは、わずかに低いセグメンテーション品質を持つ時間効率な相互作用アプローチを提供する。
本研究は,対話型3次元医用画像セグメンテーションにおいて,視線を相補的な入力モダリティとして用いる可能性を強調した。
関連論文リスト
- Organ-aware Multi-scale Medical Image Segmentation Using Text Prompt Engineering [17.273290949721975]
既存の医用画像分割法は、画像やビデオなどの一様視覚入力に依存しており、労働集約的な手動アノテーションを必要とする。
医用イメージング技術は、単一のスキャン内で複数の絡み合った臓器をキャプチャし、セグメンテーションの精度をさらに複雑にする。
これらの課題に対処するため、MedSAMは画像特徴とユーザが提供するプロンプトを統合することでセグメンテーションの精度を高めるために開発された。
論文 参考訳(メタデータ) (2025-03-18T01:35:34Z) - LIMIS: Towards Language-based Interactive Medical Image Segmentation [58.553786162527686]
LIMISは、最初の純粋言語に基づく対話型医療画像分割モデルである。
我々は、Grounded SAMを医療領域に適応させ、言語に基づくモデルインタラクション戦略を設計する。
LIMISを3つの公開医療データセット上で,パフォーマンスとユーザビリティの観点から評価した。
論文 参考訳(メタデータ) (2024-10-22T12:13:47Z) - MedCLIP-SAMv2: Towards Universal Text-Driven Medical Image Segmentation [2.2585213273821716]
MedCLIP-SAMv2はCLIPとSAMモデルを統合して臨床スキャンのセグメンテーションを行う新しいフレームワークである。
提案手法は,DHN-NCE(Decoupled Hard Negative Noise Contrastive Estimation)によるBiomedCLIPモデルの微調整を含む。
また,ゼロショットセグメンテーションラベルを弱教師付きパラダイム内で使用することにより,セグメンテーション品質をさらに向上する。
論文 参考訳(メタデータ) (2024-09-28T23:10:37Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
医用画像の領域分割を行うために, SAMを2次元から3次元に変換する新しい適応法を提案する。
本モデルでは, 腎腫瘍, 膵腫瘍, 大腸癌の3つのタスクのうち8.25%, 29.87%, 10.11%の3つのタスクにおいて, ドメイン・オブ・ザ・アーティヴ・メディカル・イメージ・セグメンテーション・モデルより優れ, 肝腫瘍セグメンテーションでも同様の性能が得られる。
論文 参考訳(メタデータ) (2023-06-23T12:09:52Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
Segment Anything Model (SAM)は画像セグメンテーションの分野で最近人気を集めている。
近年の研究では、SAMは医用画像のセグメンテーションにおいて過小評価されている。
ドメイン固有の医療知識をセグメンテーションモデルに組み込んだ医療SAMアダプタ(Med-SA)を提案する。
論文 参考訳(メタデータ) (2023-04-25T07:34:22Z) - MedSegDiff-V2: Diffusion based Medical Image Segmentation with
Transformer [53.575573940055335]
我々は、MedSegDiff-V2と呼ばれるトランスフォーマーベースの拡散フレームワークを提案する。
画像の異なる20種類の画像分割作業において,その有効性を検証する。
論文 参考訳(メタデータ) (2023-01-19T03:42:36Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
腹腔鏡装置の術中追跡は、しばしばコンピュータとロボットによる介入の必要条件である。
本研究の課題は,30の手術症例から取得した10,040枚の注釈画像からなる外科的データセットに基づいていた。
結果は、初期仮説、すなわち、アルゴリズムの性能がドメインギャップの増大とともに低下することを確認する。
論文 参考訳(メタデータ) (2020-03-23T14:35:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。