論文の概要: Reconsider the Template Mesh in Deep Learning-based Mesh Reconstruction
- arxiv url: http://arxiv.org/abs/2505.15285v1
- Date: Wed, 21 May 2025 09:10:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 15:42:59.408504
- Title: Reconsider the Template Mesh in Deep Learning-based Mesh Reconstruction
- Title(参考訳): 深層学習型メッシュ再構築におけるテンプレートメッシュの再検討
- Authors: Fengting Zhang, Boxu Liang, Qinghao Liu, Min Liu, Xiang Chen, Yaonan Wang,
- Abstract要約: メッシュ再構築は、シリコン内試験、デジタル双生児、手術計画、ナビゲーションなど、さまざまな応用の基盤となるプロセスである。
近年のディープラーニングの進歩は、メッシュ再構築速度を著しく向上させた。
適応テンプレートを生成するATMRN(Adaptive-Template-based Mesh Restruction Network)を提案する。
- 参考スコア(独自算出の注目度): 19.034314161207135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mesh reconstruction is a cornerstone process across various applications, including in-silico trials, digital twins, surgical planning, and navigation. Recent advancements in deep learning have notably enhanced mesh reconstruction speeds. Yet, traditional methods predominantly rely on deforming a standardised template mesh for individual subjects, which overlooks the unique anatomical variations between them, and may compromise the fidelity of the reconstructions. In this paper, we propose an adaptive-template-based mesh reconstruction network (ATMRN), which generates adaptive templates from the given images for the subsequent deformation, moving beyond the constraints of a singular, fixed template. Our approach, validated on cortical magnetic resonance (MR) images from the OASIS dataset, sets a new benchmark in voxel-to-cortex mesh reconstruction, achieving an average symmetric surface distance of 0.267mm across four cortical structures. Our proposed method is generic and can be easily transferred to other image modalities and anatomical structures.
- Abstract(参考訳): メッシュ再構築は、シリコン内試験、デジタル双生児、手術計画、ナビゲーションなど、さまざまな応用の基盤となるプロセスである。
近年のディープラーニングの進歩は、メッシュ再構築速度を著しく向上させた。
しかし、従来の手法は、個々の被験者に標準化されたテンプレートメッシュを変形させることに大きく依存しており、個々の被験者の間に固有の解剖学的変化を見落とし、再建の忠実さを損なう可能性がある。
本稿では,適応テンプレートを付加したATMRN(Adaptive-Template-based Mesh Restruction Network)を提案する。
OASISデータセットからの皮質磁気共鳴(MR)画像によるアプローチは、ボクセル-コルテックスメッシュの再構成において新しいベンチマークを設定し、4つの皮質構造に対して平均対称表面距離0.267mmを実現した。
提案手法は汎用的であり,他の画像モダリティや解剖学的構造に容易に移行できる。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
様々な計測アンサンプパターンと画像解像度に頑健な統合MRI再構成モデルを提案する。
我々のモデルは、拡散法よりも600$times$高速な推論で、最先端CNN(End-to-End VarNet)の4dBでSSIMを11%改善し、PSNRを4dB改善する。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Divide and Fuse: Body Part Mesh Recovery from Partially Visible Human Images [57.479339658504685]
ディバイドとフューズ」戦略は、人体部分を融合する前に独立して再構築する。
Human Part Parametric Models (HPPM) は、いくつかの形状とグローバルな位置パラメータからメッシュを独立に再構築する。
特別に設計された融合モジュールは、一部しか見えない場合でも、再建された部品をシームレスに統合する。
論文 参考訳(メタデータ) (2024-07-12T21:29:11Z) - Attention-based Shape-Deformation Networks for Artifact-Free Geometry Reconstruction of Lumbar Spine from MR Images [1.4249943098958722]
我々は, 腰椎の形状を高空間精度で再構成し, 患者間でのメッシュ通信を行う新しい注意型ディープニューラルネットワークであるtextitUNet-DeformSA$ と $textitTransDeformer$ を提示する。
実験の結果、我々のネットワークはアーティファクトフリーな幾何出力を生成しており、$textitTransDeformer$の変種は再構成された幾何の誤差を予測することができることがわかった。
論文 参考訳(メタデータ) (2024-03-30T03:23:52Z) - ReshapeIT: Reliable Shape Interaction with Implicit Template for Anatomical Structure Reconstruction [59.971808117043366]
ReShapeITは、同じカテゴリ内で共有される暗黙のテンプレートフィールドを持つ解剖学的構造を表す。
これにより、インスタンス形状とテンプレート形状との対応性の制約を強化することにより、暗黙テンプレートフィールドが有効なテンプレートを生成する。
テンプレートインタラクションモジュールは、有効なテンプレートシェイプとインスタンスワイドの潜在コードとを相互作用することで、目に見えないシェイプを再構築するために導入される。
論文 参考訳(メタデータ) (2023-12-11T07:09:32Z) - Abdominal organ segmentation via deep diffeomorphic mesh deformations [5.4173776411667935]
CTとMRIによる腹部臓器の分節は,手術計画とコンピュータ支援ナビゲーションシステムにとって必須の要件である。
肝, 腎, 膵, 脾の分節に対するテンプレートベースのメッシュ再構成法を応用した。
結果として得られたUNetFlowは4つの器官すべてによく当てはまり、新しいデータに基づいて簡単に微調整できる。
論文 参考訳(メタデータ) (2023-06-27T14:41:18Z) - Reference-based Magnetic Resonance Image Reconstruction Using Texture
Transforme [86.6394254676369]
高速MRI再構成のための新しいテクスチャトランスフォーマーモジュール(TTM)を提案する。
変換器のクエリやキーとしてアンダーサンプルのデータと参照データを定式化する。
提案したTTMは、MRIの再構成手法に積み重ねることで、その性能をさらに向上させることができる。
論文 参考訳(メタデータ) (2021-11-18T03:06:25Z) - Multi-Modal MRI Reconstruction with Spatial Alignment Network [51.74078260367654]
臨床実践では、複数のコントラストを持つMRIが1つの研究で取得されるのが普通である。
近年の研究では、異なるコントラストやモダリティの冗長性を考慮すると、k空間にアンダーサンプリングされたMRIの目標モダリティは、完全にサンプリングされたシーケンスの助けを借りてよりよく再構成できることが示されている。
本稿では,空間アライメントネットワークと再構成を統合し,再構成対象のモダリティの質を向上させる。
論文 参考訳(メタデータ) (2021-08-12T08:46:35Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
空間変換器ネットワーク(STN)を利用することにより、ポーズとスケール不変の新たなCNNアーキテクチャを提案する。
私たちのアーキテクチャは、トレーニング中に一緒に見積もられる3つのシーケンシャルモジュールで構成されています。
腹部CTスキャナーを用いた腎および腎腫瘍の分節法について検討した。
論文 参考訳(メタデータ) (2021-07-06T14:50:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。