Robust and compact single-lens crossed-beam optical dipole trap for Bose-Einstein condensation in microgravity
- URL: http://arxiv.org/abs/2505.15302v1
- Date: Wed, 21 May 2025 09:32:46 GMT
- Title: Robust and compact single-lens crossed-beam optical dipole trap for Bose-Einstein condensation in microgravity
- Authors: Jan Simon Haase, Alexander Fieguth, Igor Bröckel, Janina Hamann, Jens Kruse, Carsten Klempt,
- Abstract summary: We present a novel concept for a compact and robust crossed-beam optical dipole trap (cODT) based on a single lens.<n>The cODT is designed for the efficient generation of Bose-Einstein condensates (BECs) under dynamic conditions.<n>The system employs two independent two-dimensional acousto-optical deflectors (AODs) in combination with a single high-numerical-aperture lens.
- Score: 37.69303106863453
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present a novel concept for a compact and robust crossed-beam optical dipole trap (cODT) based on a single lens, designed for the efficient generation of Bose-Einstein condensates (BECs) under dynamic conditions. The system employs two independent two-dimensional acousto-optical deflectors (AODs) in combination with a single high-numerical-aperture lens to provide three-dimensional control over the trap geometry, minimizing potential misalignments and ensuring long-term operational stability. By leveraging time-averaged potentials, rapid and efficient evaporative cooling sequences toward BECs are enabled. The functionality of the cODT under microgravity conditions has been successfully demonstrated in the Einstein-Elevator in Hannover, Germany, where the beam intersection was shown to remain stable throughout the microgravity phase of the flight. In addition, the system has been implemented in the sensor head of the INTENTAS project to verify BEC generation. Additional realization of one- and two-dimensional control of arrays of condensates through dynamic trap shaping was achieved. This versatile approach allows for advanced quantum sensing applications in mobile and space-based environments based on all- optical BECs.
Related papers
- Dual epitaxial telecom spin-photon interfaces with correlated long-lived
coherence [0.0]
Trivalent erbium dopants emerge as a compelling candidate with their telecom C band emission and shielded 4f intra-shell spin-optical transitions.
We demonstrate dual erbium telecom spin-photon interfaces in an epitaxial thin-film platform via wafer-scale bottom-up synthesis.
arXiv Detail & Related papers (2023-10-11T01:40:04Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Bosonic pair production and squeezing for optical phase measurements in
long-lived dipoles coupled to a cavity [0.0]
Entanglement between atoms, generated by the exchange of virtual photons through a common cavity mode, grows exponentially fast.
We propose to exploit this for quantum-enhanced sensing of an optical phase (common and differential between two ensembles)
Our proposal can open unique opportunities for the observation of continuous variable entanglement in atomic systems and associated applications in next-generation optical atomic clocks.
arXiv Detail & Related papers (2022-04-27T17:39:08Z) - Electromagnetically induced transparency in inhomogeneously broadened
divacancy defect ensembles in SiC [52.74159341260462]
Electromagnetically induced transparency (EIT) is a phenomenon that can provide strong and robust interfacing between optical signals and quantum coherence of electronic spins.
We show that EIT can be established with high visibility also in this material platform upon careful design of the measurement geometry.
Our work provides an understanding of EIT in multi-level systems with significant inhomogeneities, and our considerations are valid for a wide array of defects in semiconductors.
arXiv Detail & Related papers (2022-03-18T11:22:09Z) - Open-cavity in closed-cycle cryostat as a quantum optics platform [47.50219326456544]
We present a fiber-based open Fabry-P'erot cavity in a closed-cycle cryostat exhibiting ultra-high mechanical stability.
This set of results manifests open-cavity in a closed-cycle cryostat as a versatile and powerful platform for low-temperature cavity QED experiments.
arXiv Detail & Related papers (2021-03-09T18:41:48Z) - A mechanically stable and tunable cryogenic Fabry-Perot microcavity [0.0]
High-finesse, open-geometry microcavities have recently emerged as a versatile tool for enhancing interactions between photons and material systems.
We present the design and characterization of a system that can achieve $sim$16 pm-rms passive mechanical stability between two high-finesse mirrors.
Our results facilitate operation of a tunable, high-finesse cavity within a closed-cycle cryostat, representing an enabling technology for cavity coupling to a variety of solid-state systems.
arXiv Detail & Related papers (2021-03-05T17:32:12Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Atomic self-organization emerging from tunable quadrature coupling [5.624813092014403]
We propose a novel scheme to couple two density-wave degrees of freedom of a BEC to two quadratures of the cavity field.
We unravel a dynamically unstable state induced by the cavity dissipation.
Our work enriches the quantum simulation toolbox in the cavity-quantum-electrodynamics system.
arXiv Detail & Related papers (2020-04-07T13:25:44Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.