The Super Emotion Dataset
- URL: http://arxiv.org/abs/2505.15348v1
- Date: Wed, 21 May 2025 10:21:00 GMT
- Title: The Super Emotion Dataset
- Authors: Enric Junqué de Fortuny,
- Abstract summary: Existing datasets either use inconsistent emotion categories, suffer from limited sample size, or focus on specific domains.<n>The Super Emotion dataset harmonizes diverse text sources into a unified framework based on Shaver's empirically validated emotion taxonomy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Despite the wide-scale usage and development of emotion classification datasets in NLP, the field lacks a standardized, large-scale resource that follows a psychologically grounded taxonomy. Existing datasets either use inconsistent emotion categories, suffer from limited sample size, or focus on specific domains. The Super Emotion Dataset addresses this gap by harmonizing diverse text sources into a unified framework based on Shaver's empirically validated emotion taxonomy, enabling more consistent cross-domain emotion recognition research.
Related papers
- CHEER-Ekman: Fine-grained Embodied Emotion Classification [4.762323642506733]
We extend the existing binary embodied emotion dataset with Ekman's six basic emotion categories.<n>Using automatic best-worst scaling with large language models, we achieve performance superior to supervised approaches.<n>Our investigation reveals that simplified prompting instructions and chain-of-thought reasoning significantly improve emotion recognition accuracy.
arXiv Detail & Related papers (2025-06-01T15:13:59Z) - Emo Pillars: Knowledge Distillation to Support Fine-Grained Context-Aware and Context-Less Emotion Classification [56.974545305472304]
Most datasets for sentiment analysis lack context in which an opinion was expressed, often crucial for emotion understanding, and are mainly limited by a few emotion categories.<n>We design an LLM-based data synthesis pipeline and leverage a large model, Mistral-7b, for the generation of training examples for more accessible, lightweight BERT-type encoder models.<n>We show that Emo Pillars models are highly adaptive to new domains when tuned to specific tasks such as GoEmotions, ISEAR, IEMOCAP, and EmoContext, reaching the SOTA performance on the first three.
arXiv Detail & Related papers (2025-04-23T16:23:17Z) - BRIGHTER: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages [93.92804151830744]
We present BRIGHTER -- a collection of multi-labeled datasets in 28 different languages.<n>We describe the data collection and annotation processes and the challenges of building these datasets.<n>We show that BRIGHTER datasets are a step towards bridging the gap in text-based emotion recognition.
arXiv Detail & Related papers (2025-02-17T15:39:50Z) - SentiXRL: An advanced large language Model Framework for Multilingual Fine-Grained Emotion Classification in Complex Text Environment [9.952187981270326]
We propose the Sentiment Cross-Lingual Recognition and Logic Framework (SentiXRL)<n>SentiXRL incorporates two modules,an emotion retrieval enhancement module to improve sentiment classification accuracy in complex contexts through historical dialogue and logical reasoning.<n>We have validated SentiXRL's superiority on multiple standard datasets, outperforming existing models on CPED and CH-SIMS,and achieving overall better performance on MELD,Emorynlp and IEMOCAP.
arXiv Detail & Related papers (2024-11-27T09:18:26Z) - Emotion Embeddings $\unicode{x2014}$ Learning Stable and Homogeneous
Abstractions from Heterogeneous Affective Datasets [4.720033725720261]
We propose a training procedure that learns a shared latent representation for emotions.
Experiments on a wide range of heterogeneous affective datasets indicate that this approach yields the desired interoperability.
arXiv Detail & Related papers (2023-08-15T16:39:10Z) - MAFW: A Large-scale, Multi-modal, Compound Affective Database for
Dynamic Facial Expression Recognition in the Wild [56.61912265155151]
We propose MAFW, a large-scale compound affective database with 10,045 video-audio clips in the wild.
Each clip is annotated with a compound emotional category and a couple of sentences that describe the subjects' affective behaviors in the clip.
For the compound emotion annotation, each clip is categorized into one or more of the 11 widely-used emotions, i.e., anger, disgust, fear, happiness, neutral, sadness, surprise, contempt, anxiety, helplessness, and disappointment.
arXiv Detail & Related papers (2022-08-01T13:34:33Z) - Dialog speech sentiment classification for imbalanced datasets [7.84604505907019]
In this paper, we use single and bi-modal analysis of short dialog utterances and gain insights on the main factors that aid in sentiment detection.
We propose an architecture which uses a learning rate scheduler and different monitoring criteria and provides state-of-the-art results for the SWITCHBOARD imbalanced sentiment dataset.
arXiv Detail & Related papers (2021-09-15T11:43:04Z) - Morphset:Augmenting categorical emotion datasets with dimensional affect
labels using face morphing [3.8558530661279224]
We propose a method to generate syntheticimages from existing categorical emotion datasets using facemorphing.
This method achieves augmentation factors of at least 20x or more.
arXiv Detail & Related papers (2021-03-04T06:33:06Z) - Emotional Semantics-Preserved and Feature-Aligned CycleGAN for Visual
Emotion Adaptation [85.20533077846606]
Unsupervised domain adaptation (UDA) studies the problem of transferring models trained on one labeled source domain to another unlabeled target domain.
In this paper, we focus on UDA in visual emotion analysis for both emotion distribution learning and dominant emotion classification.
We propose a novel end-to-end cycle-consistent adversarial model, termed CycleEmotionGAN++.
arXiv Detail & Related papers (2020-11-25T01:31:01Z) - Modality-Transferable Emotion Embeddings for Low-Resource Multimodal
Emotion Recognition [55.44502358463217]
We propose a modality-transferable model with emotion embeddings to tackle the aforementioned issues.
Our model achieves state-of-the-art performance on most of the emotion categories.
Our model also outperforms existing baselines in the zero-shot and few-shot scenarios for unseen emotions.
arXiv Detail & Related papers (2020-09-21T06:10:39Z) - EmoGraph: Capturing Emotion Correlations using Graph Networks [71.53159402053392]
We propose EmoGraph that captures the dependencies among different emotions through graph networks.
EmoGraph outperforms strong baselines, especially for macro-F1.
An experiment illustrates the captured emotion correlations can also benefit a single-label classification task.
arXiv Detail & Related papers (2020-08-21T08:59:29Z) - GoEmotions: A Dataset of Fine-Grained Emotions [16.05879383442812]
We introduce GoEmotions, the largest manually annotated dataset of 58k English Reddit comments, labeled for 27 emotion categories or Neutral.
Our BERT-based model achieves an average F1-score of.46 across our proposed taxonomy, leaving much room for improvement.
arXiv Detail & Related papers (2020-05-01T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.