Human in the Loop Adaptive Optimization for Improved Time Series Forecasting
- URL: http://arxiv.org/abs/2505.15354v1
- Date: Wed, 21 May 2025 10:30:02 GMT
- Title: Human in the Loop Adaptive Optimization for Improved Time Series Forecasting
- Authors: Malik Tiomoko, Hamza Cherkaoui, Giuseppe Paolo, Zhang Yili, Yu Meng, Zhang Keli, Hafiz Tiomoko Ali,
- Abstract summary: Time series forecasting models often produce systematic, predictable errors even in critical domains such as energy, finance, and healthcare.<n>We introduce a novel post training adaptive optimization framework that improves forecast accuracy without retraining or architectural changes.
- Score: 13.892998105460862
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series forecasting models often produce systematic, predictable errors even in critical domains such as energy, finance, and healthcare. We introduce a novel post training adaptive optimization framework that improves forecast accuracy without retraining or architectural changes. Our method automatically applies expressive transformations optimized via reinforcement learning, contextual bandits, or genetic algorithms to correct model outputs in a lightweight and model agnostic way. Theoretically, we prove that affine corrections always reduce the mean squared error; practically, we extend this idea with dynamic action based optimization. The framework also supports an optional human in the loop component: domain experts can guide corrections using natural language, which is parsed into actions by a language model. Across multiple benchmarks (e.g., electricity, weather, traffic), we observe consistent accuracy gains with minimal computational overhead. Our interactive demo shows the framework's real time usability. By combining automated post hoc refinement with interpretable and extensible mechanisms, our approach offers a powerful new direction for practical forecasting systems.
Related papers
- Iterate to Accelerate: A Unified Framework for Iterative Reasoning and Feedback Convergence [0.0]
We introduce a unified framework for iterative reasoning that leverages non-Euclidean geometry via Bregman divergences, higher-order operator averaging, and adaptive feedback mechanisms.<n>Our analysis establishes that, under mild smoothness and contractivity assumptions, a generalized update scheme not only unifies classical methods such as mirror descent and dynamic programming but also captures modern chain-of-thought reasoning processes in large language models.
arXiv Detail & Related papers (2025-02-06T05:24:35Z) - Self-Improvement in Language Models: The Sharpening Mechanism [70.9248553790022]
We offer a new perspective on the capabilities of self-improvement through a lens we refer to as sharpening.<n>Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training.<n>We analyze two natural families of self-improvement algorithms based on SFT and RLHF.
arXiv Detail & Related papers (2024-12-02T20:24:17Z) - Understanding Optimization in Deep Learning with Central Flows [53.66160508990508]
We show that an RMS's implicit behavior can be explicitly captured by a "central flow:" a differential equation.
We show that these flows can empirically predict long-term optimization trajectories of generic neural networks.
arXiv Detail & Related papers (2024-10-31T17:58:13Z) - Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.<n>We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - Towards Stable Machine Learning Model Retraining via Slowly Varying Sequences [6.067007470552307]
We propose a model-agnostic framework for finding sequences of models that are stable across retraining iterations.<n>We develop a mixed-integer optimization formulation that is guaranteed to recover optimal models.<n>We find that, on average, a 2% reduction in predictive power leads to a 30% improvement in stability.
arXiv Detail & Related papers (2024-03-28T22:45:38Z) - On Training Survival Models with Scoring Rules [9.330089124239086]
This work investigates using scoring rules for model training rather than evaluation.
We establish a general framework for training survival models that is model agnostic and can learn event time distributions parametrically or non-parametrically.
Empirical comparisons on synthetic and real-world data indicate that scoring rules can be successfully incorporated into model training.
arXiv Detail & Related papers (2024-03-19T20:58:38Z) - Comparative Evaluation of Metaheuristic Algorithms for Hyperparameter
Selection in Short-Term Weather Forecasting [0.0]
This paper explores the application of metaheuristic algorithms, namely Genetic Algorithm (GA), Differential Evolution (DE) and Particle Swarm Optimization (PSO)
We evaluate their performance in weather forecasting based on metrics such as Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE)
arXiv Detail & Related papers (2023-09-05T22:13:35Z) - Bayesian Prompt Learning for Image-Language Model Generalization [64.50204877434878]
We use the regularization ability of Bayesian methods to frame prompt learning as a variational inference problem.
Our approach regularizes the prompt space, reduces overfitting to the seen prompts and improves the prompt generalization on unseen prompts.
We demonstrate empirically on 15 benchmarks that Bayesian prompt learning provides an appropriate coverage of the prompt space.
arXiv Detail & Related papers (2022-10-05T17:05:56Z) - Integrated Optimization of Predictive and Prescriptive Tasks [0.0]
We propose a new framework directly integrating predictive tasks under prescriptive tasks.
We train the parameters of predictive algorithm within a prescription problem via bilevel optimization techniques.
arXiv Detail & Related papers (2021-01-02T02:43:10Z) - Fast Rates for Contextual Linear Optimization [52.39202699484225]
We show that a naive plug-in approach achieves regret convergence rates that are significantly faster than methods that directly optimize downstream decision performance.
Our results are overall positive for practice: predictive models are easy and fast to train using existing tools, simple to interpret, and, as we show, lead to decisions that perform very well.
arXiv Detail & Related papers (2020-11-05T18:43:59Z) - Predictive Coding Approximates Backprop along Arbitrary Computation
Graphs [68.8204255655161]
We develop a strategy to translate core machine learning architectures into their predictive coding equivalents.
Our models perform equivalently to backprop on challenging machine learning benchmarks.
Our method raises the potential that standard machine learning algorithms could in principle be directly implemented in neural circuitry.
arXiv Detail & Related papers (2020-06-07T15:35:47Z) - Improved Adversarial Training via Learned Optimizer [101.38877975769198]
We propose a framework to improve the robustness of adversarial training models.
By co-training's parameters model's weights, the proposed framework consistently improves robustness and steps adaptively for update directions.
arXiv Detail & Related papers (2020-04-25T20:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.