Distributionally Robust Federated Learning with Client Drift Minimization
- URL: http://arxiv.org/abs/2505.15371v1
- Date: Wed, 21 May 2025 11:05:56 GMT
- Title: Distributionally Robust Federated Learning with Client Drift Minimization
- Authors: Mounssif Krouka, Chaouki Ben Issaid, Mehdi Bennis,
- Abstract summary: textitDRDM is a distributionally robust optimization framework with dynamic regularization to mitigate client drift.<n>textitDRDM frames the training as a min-max optimization problem aimed at maximizing performance for the worst-case client.<n>Experiments show that textitDRDM significantly improves worst-case test accuracy while requiring fewer communication rounds.
- Score: 35.08453461129848
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) faces critical challenges, particularly in heterogeneous environments where non-independent and identically distributed data across clients can lead to unfair and inefficient model performance. In this work, we introduce \textit{DRDM}, a novel algorithm that addresses these issues by combining a distributionally robust optimization (DRO) framework with dynamic regularization to mitigate client drift. \textit{DRDM} frames the training as a min-max optimization problem aimed at maximizing performance for the worst-case client, thereby promoting robustness and fairness. This robust objective is optimized through an algorithm leveraging dynamic regularization and efficient local updates, which significantly reduces the required number of communication rounds. Moreover, we provide a theoretical convergence analysis for convex smooth objectives under partial participation. Extensive experiments on three benchmark datasets, covering various model architectures and data heterogeneity levels, demonstrate that \textit{DRDM} significantly improves worst-case test accuracy while requiring fewer communication rounds than existing state-of-the-art baselines. Furthermore, we analyze the impact of signal-to-noise ratio (SNR) and bandwidth on the energy consumption of participating clients, demonstrating that the number of local update steps can be adaptively selected to achieve a target worst-case test accuracy with minimal total energy cost across diverse communication environments.
Related papers
- DRO-Augment Framework: Robustness by Synergizing Wasserstein Distributionally Robust Optimization and Data Augmentation [13.764572786186879]
We introduce DRO-Augment, a novel framework that integrates Wasserstein Distributionally Robust Optimization with various data augmentation strategies.<n>Our method outperforms existing augmentation methods under severe data perturbations and adversarial attack scenarios.<n>On the theoretical side, we establish novel generalization error bounds for neural networks trained using a computationally efficient, variation-regularized loss function.
arXiv Detail & Related papers (2025-06-22T02:18:03Z) - Robust Federated Learning in the Face of Covariate Shift: A Magnitude Pruning with Hybrid Regularization Framework for Enhanced Model Aggregation [1.519321208145928]
Federated Learning (FL) offers a promising framework for individuals aiming to collaboratively develop a shared model.<n> variations in data distribution among clients can profoundly affect FL methodologies, primarily due to instabilities in the aggregation process.<n>We propose a novel FL framework, combining individual parameter pruning and regularization techniques to improve the robustness of individual clients' models to aggregate.
arXiv Detail & Related papers (2024-12-19T16:22:37Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape [59.841889495864386]
In federated learning (FL), a cluster of local clients are chaired under the coordination of a global server.
Clients are prone to overfit into their own optima, which extremely deviates from the global objective.
ttfamily FedSMOO adopts a dynamic regularizer to guarantee the local optima towards the global objective.
Our theoretical analysis indicates that ttfamily FedSMOO achieves fast $mathcalO (1/T)$ convergence rate with low bound generalization.
arXiv Detail & Related papers (2023-05-19T10:47:44Z) - Mobilizing Personalized Federated Learning in Infrastructure-Less and
Heterogeneous Environments via Random Walk Stochastic ADMM [0.14597673707346284]
This paper explores the challenges of implementing Federated Learning (FL) in practical scenarios featuring isolated nodes with data heterogeneity.
To overcome these challenges, we propose a novel mobilizing personalized FL approach, which aims to facilitate mobility and resilience.
We develop a novel optimization algorithm called Random Walk Alternating Direction Method of Multipliers (RWSADMM)
arXiv Detail & Related papers (2023-04-25T03:00:18Z) - Federated Minimax Optimization with Client Heterogeneity [11.558008138030845]
Minimax computation has seen a surge in interest with the advent modern applications such as GANs.
We propose a general federated minimax framework that subsumes settings and existing methods like Local SGDA.
arXiv Detail & Related papers (2023-02-08T18:33:55Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Federated Distributionally Robust Optimization for Phase Configuration
of RISs [106.4688072667105]
We study the problem of robust reconfigurable intelligent surface (RIS)-aided downlink communication over heterogeneous RIS types in a supervised learning setting.
By modeling downlink communication over heterogeneous RIS designs as different workers that learn how to optimize phase configurations in a distributed manner, we solve this distributed learning problem.
Our proposed algorithm requires fewer communication rounds to achieve the same worst-case distribution test accuracy compared to competitive baselines.
arXiv Detail & Related papers (2021-08-20T07:07:45Z) - Fair and Consistent Federated Learning [48.19977689926562]
Federated learning (FL) has gain growing interests for its capability of learning from distributed data sources collectively.
We propose an FL framework to jointly consider performance consistency and algorithmic fairness across different local clients.
arXiv Detail & Related papers (2021-08-19T01:56:08Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
Federated learning (FL) offers a solution to train a global machine learning model.
FL suffers performance degradation when client data distribution is non-IID.
We propose a new adaptive training algorithm $textttAdaFL$ to combat this degradation.
arXiv Detail & Related papers (2021-08-12T14:18:05Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.